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A topos theory for quantum mechanics

John V Corbett
Department of Mathematics, Macquarie University,
N.S.W. 2109, Australia,
The Centre for Time, Philosophy Department,
Sydney University, N.S.W. 2006, Australia
john.corbett@mq.edu.au

Abstract: Any quantum system that has an algebra of physical attributes represented by a ∗-algebra,
A, on a Hilbert space that carries a unitary representation of its symmetry group has its own real
number system for the values of its attributes. They are called quantum real numbers (qr-numbers).
When its state space ES(A) has the weak topology generated by the real - valued functions aQ : ES(A)→
R given by a(ρ) = Tr(ρ.Â) : ∀ρ ∈ ES(A) and Â ∈ A, the qr-numbers are sections of RD(ES(A)), the
sheaf of Dedekind real numbers in the spatial topos Shv(ES(A)). The open subsets of ES(A) are the
conditions of the system, the internal logic is intuitionistic.
The standard real number value of a physical attribute obtained in a measurement is a constant qr-
number approximations to the attribute's actual qr-number value.
Each quantum particle with positive mass moves in a spatial continuum that is isomorphic to
RD(ES(A))3. This continuum is su�ciently non-classical that a single particle can have a quantum
trajectory which passes through two classically separated slits and the two particles in the Bohm-Bell
experiment stay close to each other so that Einstein locality is retained in quantum space.

Keywords: real numbers in a spatial topos, quantum locality, quantum measurement
PACS: 03.65.-w, 03.65.Ud, 03.65.Fd
Received: November 7, 2013 Accepted: December 30, 2013

The incompleteness of quantum theory

In a letter to Schr�odinger dated December 22 1950 [20] in talking about quantum theory, Einstein remarked
that,

If one wants to consider the quantum theory as �nal (in principle), then one must believe that a
more complete description would be useless because there would be no laws for it. If that were so
then physics could only claim the interest of shopkeepers and engineers, the whole thing would be a
wretched bungle.

The following is an attempt to make quantum theory complete in the sense of Einstein [7] (1933), �A complete
system of theoretical physics is made up of concepts, fundamental laws which are supposed to be valid for those
concepts and conclusions to be reached by logical deduction. It is these conclusions which must correspond
with our separate experiences;'. Some of the experiences of quantum-physics, mainly those associated with
measurements, that reveal lacunae in the standard quantum theory will be discussed.

Other topos theoretical approaches

Di�erent topos theoretical formulations of quantum theory has been developed, for a recent survey see Flori
[8].Their aims are similar to those of the quantum real numbers approach but the emphases are quite di�erent.
All start from algebraic formulations of quantum theory; Doering and Isham [6]use von Neumann algebras,
Heunen and Spitters [11] use C∗-algebras, and we use O∗-algebras. The �rst two take a non-commutative
algebra and cover it by a family of commutative sub-algebras that are objects in a topos of presheaves. We call
this the commutative sub-algebra approach.

What is an empirical fact? If physical quantities can be measured with in�nite accuracy then only commu-
tative sub-algebras can be measured because of Heisenberg's uncertainty principle. This is the understanding
that seems to be accepted in the commutative sub-algebras approach. The qr-numbers approach accepts that
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empirical numerical facts are only ever known with �nite accuracy. In this view, Heisenberg's uncertainty rela-
tions puts limits on the level of accuracy attainable in measuring non-commuting elements but does not prohibit
their measurement. Furthermore the commutative sub-algebra approach seems to accept that physical qualities
only have numerical values when they are observed. In the qr-number approach they have numerical values
even when not being observed.

All seek to revise the mathematical structure of quantum theory in order that it can be re-interpreted in
realist terms1 rather than as an instrumentalist theory.

Outline of the paper

� The qr-number hypothesis.

� Mathematical structures

� Quantum space and Heisenberg's Inequalities.

� Aspects of measurement

� Heisenberg's Inequalities.

� Evidence that the spatial continuum of quantum phenomena is not classical .

� Entanglement in the qr-numbers model: EPR-Bohm-Bell experiment.

� The double slit experiment.

� A deterministic violation of Bell's theorem.

� qr-number equations of motion.

� Summing up.

The talk is based on work with Thomas Durt and the late Murray Adelman. I wish to thank Prof Timur
Kamalov for his invitation to talk at this conference.

The quantum real number hypothesis:

The paradigm shift from classical to quantum theory occurs through the change in the type of real numbers
that physical variables can take as quantitative values.

The real numbers for a quantum system are Dedekind real numbers in a spatial topos built upon the system's
state space whose open sets are the domains of de�nition of the numbers.

The �direct connection between observation properties and properties possessed by the independently ex-
isting object" [4] is cut, an indirect connection is made through measurement processes. Each experimental
measurement has a limited level of accuracy, within which the measured attribute's qr-number value is approx-
imated by a standard real number.

In the qr-number model:

� the L�uders-von Neumann transformation (collapse hypothesis) appears as an approximation to the change
in the qr-number values in a measurement of the �rst kind,

� The Born rule gives a standard real number approximation to the qr-number probability,

� Heisenberg's uncertainty relations restricts the accuracy at which some attributes can be measured simul-
taneously but doesn't prohibit their measurement,

1A realist theory is one in which the systems and their attributes exist and take values independently of whether they are
measured.
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� massive particles have trajectories in the qr-number space to extents that allow (1) a single particle to
pass through a double slit without being detected at either slit and (2) two entangled particles to stay
close to each other,

� the qr-number values (~qQ(U)(t), ~pQ(U)(t)) of a massive particle satisfy Hamilton's equations of motion
that can be approximated by Heisenberg's operator equations averaged over U for certain families of open
sets.

Mathematical structures

A quantum system with a Hilbert space H carrying a unitary representation U of its symmetry group G has
physical attributes (identi�able qualities) which are represented by e.s.a. operators on dense domains of H that:

� form an O∗-algebra A; e.g., the representation dU of the enveloping algebra E(G) of the Lie algebra G of
G,

� have a common domain D∞(U), the set of C∞-vectors for the representation U ,

� are operationally identi�able through their transformations under subgroups of G. e.g., Euclidean group
transformations identify the position attributes.

The state space ES(A) is the space of normalized strongly positive linear functionals on A.

� The states are normalized trace class operators: convex combinations of projections P = |φ〉〈φ| onto unit
vectors φ ∈ D∞(U).

� ES(A) has the weak topology generated by the functions a : ES(A)→ R given by a(ρ) = Tr(ρÂ) : ∀ρ ∈
ES(A) and labeled by e.s.a. operators Â ∈ A.

� A typical open setis a �nite intersection N (ρ0; Â; ε) = {ρ; |TrρÂ − Trρ0Â| < ε}, for Â ∈ A, ρ0 ∈
ES(A), ε > 0. When A = dU(E(G)) any open set is a union of ν(ρk; δ) = {ρ|Tr|ρk − ρ| < δ} for
ρk ∈ ES(A) and δ > 0.

Such a quantum system will be labelled {H,A, ES(A)}.

qr-numbers

qr-numbers depend upon the quantum system as they are sections of the sheaf of Dedekind reals RD(ES(A)) in
Shv(ES(A)), the topos of sheaves on the topological space ES(A).

RD(ES(A)) is isomorphic to C(ES(A)), the sheaf of germs of continuous real-valued functions on ES(A). Two
functions have the same germ at ρ ∈ ES(A) if they agree on some open neighbourhood of ρ.

For each non-empty U ∈ O(ES(A)), the subsheaf RD(U)

� has integers Z(U), rationals Q(U) and Cauchy reals RC(U) as subsheaves of locally constant functions;

� has orders < and ≤ compatible with those on the rationals Q(U) but the inequality < is not total because
trichotomy, x > 0 ∨ x = 0 ∨ x < 0, is not satis�ed. Moreover ≤ is not equivalent to < ∨ =;

� is closed under the commutative, associative, distributive binary operations + and ×, has 0 6= 1 and is a
residue �eld, i.e., if b ∈ RD(U) is not invertible then b = 0;

� has a distance function | · | which de�nes a metric with respect to which it is a complete metric space
in which Q(U) dense. A section b ∈ RD(U) is apart from 0 i� |b| > 0. RD(U) is an apartness �eld, i.e.,
∀b ∈ RD(U), |b| > 0 i� b is invertible.

� are not Dedekind complete, as least upper bounds need not exist, and they are not Archimedean, because
there are in�nitesimal qr-numbers. For example, the expectation value a(ρ0) = Trρ0Â for a given state
and a given operator is an in�nitesimal qr-number because there is no open set V 6= ∅ such that a(ρ0)|V >
0 ∨ a(ρ0)|V < 0.
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Locally linear qr-numbers A(ES(A))

They are important in the construction of qr-numbers and form a subsheaf of RD(ES(A)). Given an essentially
self-adjoint Â ∈ A there is a locally linear real-valued function a on ES(A) with a(ρ) = TrρÂ for ρ ∈ ES(A).

� A(ES(A)) is dense in RD(ES(A)).

� Every qr-number is a continuous real function of locally linear qr-numbers.

� If W 6= ∅, a(W ) = b(W ) if and only if the de�ning operators are equal, Â = B̂.

� If W 6= V are open sets it is possible that the range of a(W ) is the same as that of a(V ).

� The prolongation by zero [21] of a locally linear qr-number a(W ), for W 6= ∅, gives a globally de�ned
extended locally linear qr-number.

qr-numbers generated by a single operator Â generates sub-sheaves AÂ(ES(A)) of A(ES(A)) and RD
Â(ES(A))

of RD(ES(A)), both contain the integers ZD(ES(A)), rationals QD(ES(A)) as sub-sheaves of locally constant

functions. The order relations and the distance function de�ned on RD(ES(A)) restrict to RD
Â(ES(A)) so that

QD(ES(A)) is dense in RD
Â(ES(A)). If the numerical range of Â is R then RD

Â(ES(A)) is a complete metric
space.

qr-number geometry

In Riemann's 1854 lecture On the hypotheses which lie at the foundations of geometry there are two hypotheses
:

� A topological hypothesis: locations are �xed by allocating multiplets of real numbers.

� A metrical hypothesis: the distance between the located points is given by a metric function leading to
Riemannian geometries.

Riemann did not explore the choices of real numbers and this has been mostly ignored since. On the other
hand Riemann saw that there was a choice of the metric and that choice would be determined by the physics.

We propose that the appropriate real numbers to �x the locations of a single massive quantum particle with
symmetry group G are the qr-numbers RD(ES(A)) with A = dU(E(G))),

� its quantum space is topologically given as RD(ES(A))3.

� the cartesian coordinate axes are parametrized by Ax
j
Q(ES(A)) generated by the position operators X̂j ,

for j = 1, 2, 3.

� The triplet ~xQ(W ) for non-empty W ∈ O(ES(A)) is an open set in RD(ES(A)) by construction.

� The graph of ~xQ(W ) is (W,O~x) with O~x an open subset of the Euclidean space R3.

For a system of N massive quantum particle the locations are �xed by the real numbers RD(ES(A))N .

Aspects of Measurement

Every measurement is obtained at a �nite level of precision [16]. Every experiment has a con�dence level,
0 ≤ (1 − ε) ≤ 1 as well as a measure of precision κ > 0, when the con�dence level is unity, when ε = 0, the
experimenter is has complete con�dence in the experimental results, including the measure of precision.

The relation between the qr-number value of an attribute and the standard rational number obtained in an
experimental measurement is elucidated through the process of ε sharp collimation [3] in a single slit.

The ε sharp collimation of Â in Ia when the system has the condition W is su�cient to give a standard
real approximation to its qr-number value. For an interval Ia, midpoint a0 and width |Ia|, if W is such that
a(W ) ∈ Ia and (a2(W )− a(W )2) ≤ ε

4 |Ia|
2 then a(W ) = a01(W ) with precision |Ia|/2.
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Strictly ε sharp collimation is a stronger version of ε sharp collimation. Let P̂ Â(Ia) be the spectral projection
operator of Â on Ia, then Â is strictly ε sharp collimated in Ia on W if it is ε sharp collimated on W and for

all ρ ∈W Tr|ρ− P̂ Â(Ia)ρP̂ Â(Ia)| < ε.

Theorem 1. If a0 ∈ σ(Â) and ρ0 = |ψ0〉〈ψ0| is an eigenstate of Â at a0 with P̂ Â(Ia)ρ0P̂
Â(Ia) = ρ0, then

∀ε > 0,∃δ > 0 such that Â is strictly ε sharp collimated in Ia on ν(ρ0, δ).

The spectral projection operator P̂ Â(Ia) has the qr-number value πÂ(Ia)(W ) in the condition W . Â is ε

sharp located in the interval Ia in the condition W when (1− ε) < πÂ(Ia)(W ) ≤ 1, this is a stronger version of
weak location which means only that the range of a(W ) ⊆ Ia.

Theorem 2. If Â is ε sharp collimated in Ia on W , then Â is ε sharp located in Ia on W .

L�uders-von Neumann Collapse is a standard way of understanding quantum measurement. The collapse

hypothesis states that in a measurement of Â an initial state ρ0 "collapses" to the state ρ′0 = P̂A(Ia)ρ0P̂
A(Ia)

Tr(P̂A(Ia)ρ0)
.

The following theorem reveals the sense in which the collapse postulate gives a good approximation to the
qr-number value of the observable.

Theorem 3. If the system is prepared in U = ν(ρ0, δ) and then Â is strictly ε sharp collimated in Ia on W ,
then any B̂ ∈ A will have the qr-number value b(U ∩W ) ≈ (Trρ′0B̂)1(U ∩W ) to accuracy proportional to δ+ 2ε
with constant of proportionality depending on B̂.

When Â is strictly ε sharply collimated in Ia the qr-number value of any attribute changes as if it had

undergone a transformation B̂ → P̂ ·B̂·P̂
Tr(P̂ ·ρ̂0)

.

Quantum mechanical probabilities

The spectral families of self adjoint operators are used [3] to de�ne quantum probability measures on R. If

P̂ Â(S) is the spectral projection operator of Â on the Borel subset S of R, then in the standard interpretation

µÂρ (S) = TrρP̂ Â(S) is the probability that when the system is in the state ρ a measurement of Â gives a result
in the set S.

The qr-number probability that a(U) lies in S is µÂU (S) = πÂ(S)(U), the qr-number value of P̂ Â(S) at U .

If U = ν(ρs; δ) for δ � 1 then, for all Borel sets S, πÂ(S)(U) ≈ TrρsP̂ Â(S) = µÂρs(S), the standard quantum

mechanical probability when the system is in the state ρs. so that |µÂU (S)− µÂρs(S)| < δ.

In the operational approach of Busch et al. [3] e�ects are positive operators that satisfy 0̂ ≤ B̂ ≤ Î. They
form a convex subset of the bounded operators B(H). When quantum mechanical probabiities are described by
POV ( positive operator valued) measures [3], the e�ects lie in their range and are de�ned as the observables.
If F is a σ- algebra of subset of a non-empty set M then a normalised positive operator valued (POV) measure
is map E : F → B(H) that satis�es: (i) E(S) ≥ 0̂ for all S ∈ F , (ii) E(M) = Î and (iii) E(∪Sk) =

∑
E(Sk) for

sequences {Sk} ∈ F with Sj ∩ Si = ∅ if i 6= j, convergence being in the weak operator topology on B(H).
In this operational approach it is the properties that are unsharp, the numerical results of a measurement

are still assumed to be sharp. In contrast, in the qr-number approach, it is the measured values of the properties
that are unsharp in the sense of not being in�nitely precise..

On the other hand, the e�ects also have qr-number values, the qr-number value of the e�ect E(S) when the
system is in the condition W is eS(W ). Then a measurement of E(S) is ε sharp collimated in ]a, b[⊂]0, 1[ on

the condition W if the range of eS(W ) lies in ]a, b[ and (e2
S(W )− eS(W )2) ≤ ε (b−a)2

4 .

Statistics: ontological and epistemological conditions

When a system is experimentally prepared in an open set W of state space, then its epistemological condition
is W . The ontological condition of the system can be any non-empty open set V ⊂ W because the values of
qualities de�ned to extent V will satisfy the experimental restrictions imposed on qualities de�ned to extent W .

Usually the epistemic condition is determined for an ensemble of systems, each member of the ensemble has
an ontic condition V ⊂ W . This leads to an ignorance interpretation for the statistics because attributes can
have di�erent qr-number values on di�erent V .
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We have shown [10] that if the epistemological condition for an ensemble of systems is the open set ν(ρ0, δ)
for 0 < δ � 1 then the outcomes of a dichotomic experiment are well approximated by expectation values
calculated at the quantum state ρ0 from which Born's quantum probability rule can be obtained.

When the epistemological condition W ensures that Â is strictly ε sharply collimated in Ia then any ontic
condition Uk ∩W 6= ∅ registers a distinct value ak ∈ Ia for Â to accuracy ε. The measurement problem arises
because quantum mechanics predicts only a probability distribution of the values obtained by measuring a
physical quantity on an ensemble of systems which are all prepared identically. But probabilities can only be
determined if each outcome can be observationally distinct. This is obtained in the qr-number description but
not in the standard model [9].

Heisenberg Inequalities

In the qr-number model, they give limitations on the precision with which the qr-number values of two attributes
represented by non-commuting operators can be simultaneously approximated by standard real number values
on an open set W . Let Â, B̂ ∈ dU(E(G)) be essentially self adjoint on D∞(U) ⊂ H.

Theorem 4. If Â is ε-sharp collimated in Ia and B̂ is ε-sharp collimated in Ib when the system is the condition
W and ıĈ = [Â, B̂] then

|Ia||Ib| ≥ 2|c(W )|/ε (1)

When precision is given by the half-width of the interval, the Heisenberg's uncertainty principle limits the
precision with which the attributes can be realised simultaneously in the condition W .

Corollary 1. Let Q̂ and P̂ represent the position and its conjugate momentum of a massive particle, i.e.,
ı[P̂ , Q̂] = ~, and let Iq and Ip be slits for the conjugate variables. If a particle in a condition W is ε-sharp
collimated through both slits then the product of the widths of the slits must satisfy,

|Iq||Ip| ≥ 2~/ε (2)

This result determines the minimum area in the classical phase space that is required if a particle is to be ε-sharp
collimated in both the Q̂ and P̂ attributes.

Entangled two-particle conditions

Let Ψ(1, 2) = 1√
2
(φR(1)φL(2) ± φL(1)φR(2)) with orthogonal single particle wave functions, {φR(j), φL(j)}

which span 2-dimensional subspaces P̂ (j)H(j), j = 1, 2. The entangled pure state is ρ0(1, 2) = P̂Ψ(1,2) whose

reduced states are mixed states ρ0(j) = 1
2 P̂ (j) where the projection operator P̂ (j) = (P̂ÛφR(j) + P̂ÛφL(j)) for

any isometry Û on P̂ (j)H(j).

The two particle condition W0(1, 2) = ν(P̂Ψ(1,2); ε) reduces to the single particle conditions W̃0(j) =
ν(ρ0(j); δj), j = 1, 2, for δj ≤ ε.

If ε < 1
2 then W0(1, 2) is an entangled condition as it contains no product states and there are no pure states

in W̃0(j) = ν(ρ0(j); δj). Therefore the measurement of any single particle attribute Â(j) in the condition W̃0(j)
cannot be measured as a standard real number.

Because ν(ρ0(j), ε) ≈ 1
2ν(PÛφR(j); ε) + 1

2ν(PÛφL(j); ε), where the conditions ν(P̂ÛφK(j); ε),K = L,R, contain
pure states and hence support the measurement of some attributes of the individual particle. Each attribute
Â(j) has qr-number value, if ε� 1,

a(W̃0(j)) ≈ 1

2
(a(ν(P̂ÛφR(j); ε)) +

1

2
(a(ν(P̂ÛφL(j); ε)) (3)

which can be used in an experiment to separate the possible outcomes.
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Evidence that the spatial continuum of quantum phenomena is not
classical.

Bell's experiments

(a) In the Einstein-Podolsky-Rosen-Bohm-Bell experiments for two spin one-half massive particles, the particles
are prepared so that the sums of their momenta and their spins are both zero. They are sent to two Stern-
Gerlach apparatuses, BR, BL, a large distance apart whose magnetic �elds can be set independently in directions
~u(R), ~u(L).

If quantum space is assumed to be classical and each particle is assumed to arrive at one of BR, BL then the
experiment contravenes Einstein locality because changing the direction of the magnetic �eld in one apparatus
a�ects the particle in the other.

The qr-numbers approach maintains Einstein locality in the quantum space of the entangled two particle
system because the single particles are always close to each other in their qr-number space and hence can always
interact. [13]

It gives the usual quantum mechanical results for the experiment except when the particles have di�erent
masses because the detected mass is the average of the masses of the particles.

In a suitably prepared condition the qr-number trajectory for each particle goes both to BL and up along
~uL and to BR and down along ~uR to extent W̃+

L ∪ W̃
−
R , and each goes both to BL and down along ~uL and to

BR and up along ~uR to extent W̃−L ∪ W̃
+
R . For example a particle with ontic condition Vn registers in a detector

in the upper sector of BR only if Vn ∩ W̃+
R 6= ∅.

The double slit experiment

The building up process is described deterministically in the qr-number model of quantum mechanics [14].
A quantum particle can simultaneously pass through two slits I+

z , I
−
z that are separated in classical space

I+
z ∩ I−z = ∅ if its location in qr-number space is an open set zQ(V+ ∪ V−) with zQ(V+) ⊂ I+

z and zQ(V−) ⊂ I−z
so that Ẑ is not ε located in I+

z on V+ nor in I−z on V−.
The particle has a qr-number trajectory that passes through the double slits and arrives at a single classical

location on the detector screen. If the de Broglie relation py = h
λy

between the momentum py and a wave-

length λy is assumed then the qr-number path di�erence between the sub-paths is approximately λy when the
qr-number trajectory ends in the vicinity of the �rst maxima of the interference pattern.

When su�ciently many particles have been prepared that the union of their ontological conditions covers
Wm(ε), the qr-number probability that a particle, prepared in the epistemic condition Wm(ε), is detected in
the dth slit is given by the qr-number πd(t2)(Wm(ε)) = πd(t2)(∪αVα), the qr-number value of the projection

operator P̂ Ẑ(t2)(Id) in the conditionWm(ε). The standard formula for the interference pattern is obtained when
Wm(ε) = ν(ρm, ε) with ρm = |ψm〉〈ψm| for ψm = 1√

2 (ψ+ + ψ−).

A deterministic violation of Bell's theorem

Consider the Bell-Bohm experiment as a measurement of the �rst kind of the two particle attribute Ĉ(~uL, ~uR) =
σ1.~uL ⊗ σ2.~uR which is repeated for pairs of particles prepared in the epistemic condition W0(ε) = ν(ρ0; ε).

The qr-number value of the attribute Ĉ(~uL, ~uR) for the nth pair in the condition Vn(1, 2) ⊂ W0(ε) is
c(~uL, ~uR)Q(Vn(1, 2)). Now Ĉ(~uL, ~uR) is a symmetry with ‖Ĉ(~uL, ~uR)‖ = 1. There exists a projection operator

Ê(~uL, ~uR) such that 2Ê(~uL, ~uR) = Ĉ(~uL, ~uR) + Î(1, 2).
With the "ergodic assumption", that N independent measurements on one system are equivalent to one

measurement on N independent systems, we can prove

Theorem 5. If the system is in the ontic condition
Vn(1, 2) = ν(ρn; δn), δn � ε, then,

|c(~uL, ~uR)Q(Vn) − Tr(ρnĈ(~uL, ~uR))| < δn. (4)

Proof. Let Ê(~uL, ~uR) be the projection operator of Ĉ(~uL, ~uR). Then the proof of Theorem 5 in [10] can be used
with Ê(~uL, ~uR) replacing the projection operator P̂i(1).
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From the theory of independent errors the most probable value of a set of measurements is their arithmeti-
cal mean but ∀n, |TrρnĈ(~uL, ~uR) − Trρ0Ĉ(~uL, ~uR)| < ε therefore the most probable value is approximately
Trρ0Ĉ(~uL, ~uR).

Corollary 2. When ρ0 = P̂Ψ(1,2;s1,s2)± then Trρ0Ĉ(~uL, ~uR) = −~uL · ~uR.

Ψ(1, 2; s1, s2)± =
1

2
(φL(1)⊗ φR(2)± φR(1)⊗

φL(2))⊗ (|+s1〉 ⊗ |−s2〉+ |−s1〉 ⊗ |+s2〉) (5)

where L and R label opposite directions along the z-axis and |±sj 〉 represents particle j's spin up (down)

polarisation state along a direction ~b orthogonal to the z-axis. Therefore in this qr-number deterministic model,
Bell's theorem is violated in accordance with experiment.

qr-number equations of motion for massive particles.

For any open set U , the qr-number values (~q(U)(t), ~p(U)(t)) of the position and momentum of a massive
quantum particle satisfy classical equations of motion. Thus, if h(~q(U)(t), ~p(U)(t)) is the qr-number value of
the Hamiltonian,

dqj(U)(t)

dt
=
∂h(~q(U)(t), ~p(U)(t))

∂pjQ(U)(t)
, (6)

dpjQ(U)(t)

dt
= −∂h(~qQ(U)(t), ~pQ(U)(t))

∂qjQ(U)(t)
. (7)

where h(~qQ(U)(t), ~pQ(U)(t)) =
∑3
j=1

1
2m (pjQ(U)(t))2 + V (~qQ(U)(t)).

The Hamiltonian equations of motion for ~qQ(W )(t) are compared with equations for ~q(t)Q(W ) obtained
by averaging Heisenberg operator equations over W . They give the same trajectory, ~qQ(W )(t) = ~q(t)Q(W ),
when V (~qQ(U)(t)) is linear: e.g. free and SHM motion. For suitably smooth forces, the evolutions are locally
indistinguishable - there exists a class of open subsets W (~x, ε) ⊂ ES(A) on which the averaged values of
Heisenberg's operator equations closely approximate the qr-number Hamilton's equations.

The class {W (~x, ε); ~x ∈ R3, ε > 0} do not cover ES(A), but for each W (~x, ε) there is an open ball
B(~x, δ) ⊂ R3, the collection of which cover R3. An observer measuring a particle with apparatus set up in one of
these open balls could not determine locally whether the evolution of the particle was governed by Heisenberg's
operator equations of motion averaged over W (~x, ε) or by Hamilton's qr-number equations of motion restricted
to W (~x, ε)

Summing up

The above provides a prima facie case for the hypothesis that the shift from classical to quantum theory entails
a change in the type of real numbers that physical variables can have as quantitative values.

The real numbers for a quantum system are Dedekind real numbers in a spatial topos built upon the
system's state space whose open sets are the domains of de�nition of the numbers and are the completed states
(conditions) of the system. The logic is thereby intuitionistic. These changes maintain the experimentally
veri�ed predictions of standard quantum theory.

Microscopic entities possess qualities with de�nite qr-number values even in the absence of a speci�c macro-
scopic experimental arrangement. The qr-number values exist to extents which may be limited by the experi-
mental arrangement or by interactions between the entities.

If the Dedekind real numbers hypothesis is correct then there should be a postulate of covariance under
change of topos in which the sheaf of Dedekind real number exists because maps between RD(X) and RD(Y )
are obtained using functors between the toposes Shv(X) and Shv(Y ).
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This postulate would be along the lines that the general laws of physics should be expressible in equations
which hold for all systems of Dedekind real numbers. For example, the equations of motion for both quantum
and classical particles can be expressed in Dedekind real numbers in both the Lagrangian and Hamiltonian
formulations.
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Introduction

The two-slit experiment has been one of the most important experiments for the conceptual development of
quantum mechanics. Richard Feynman [16] called it "a phenomenon which is impossible ... to explain in any
classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only mystery." It is
here that the idea of "wave mechanics" seems most apposite. On the other hand the Schr�odinger equation is not
a classical hyperbolic wave equation and as Bell pointed out, just what is waving is not clear [18]. Moreover, in
place of extended wave, only a sequence of discrete, localised events are detected. In the results of the Bologna
(1974) [11] and Hitachi (1989) [15] double slit experiments the detection of a sequence of single electrons are
detected from which an interference pattern is extrapolated. This is apparent in the Hitachi pictures.
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Single-electron events build up over a 20 minute exposure to form an interference pattern in this double-slit
experiment by Akira Tonomura and co-workers. (a) 8 electrons; (b) 270 electrons; (c) 2000 electrons; (d) 60,000
electrons.

The mystery behind this phenomenon is resolved when the quantitative values of the attributes of the
electrons are taken to be not standard real numbers but Dedekind real numbers in a topos of sheaves [10] on
the electron's quantum state space. Many of the conceptual mysteries of quantum mechanics come from trying
to �t microscopic phenomena into a conceptual framework in which standard real numbers are assumed to be
the quantitative values for the attributes of a quantum system. The argument for this is that the outcomes of
experiments always are rational numbers, but the standard rationals are dense in the electron's Dedekind real
numbers and hence can be obtained as the measured values of its attributes to the precision required in the
experiment.

The quantum real number hypothesis:

The paradigm shift from classical to quantum theory can be seen as the change in the type of real numbers
that the physical attributes of a microscopic system take as their quantitative values. This not a change in
coordinates, nor a change of frame: it is a change in the underlying �eld of real numbers. The �rst step was
to replace the standard real numbers by matrices, see Heisenberg [20], but this didn't distinguish between an
attribute and the numerical values it takes. The real numbers for a quantum system are Dedekind real numbers
in a spatial topos built upon the system's state space whose open sets are the domains of de�nition of the
numbers they don't have all the properties of the standard reals but they have su�cient to develop di�erential
calculus.

In this model standard quantum states exist but their central role in standard quantum mechanics is taken by
open subsets of state space, that are called conditions. Conditions are "complete states" in the sense that they
both generate the values of all attributes, as the real numbers are continuous functions whose domains are open
sets, and they determine the solutions of the equations of motion. For any quantum system S the conditions
are the open subsets of its quantum state space, ES(HS). Conditions are the truth values of propositions in the
intrinsic logic of the sheaf Shv(ES(HS)), the sub-object classi�er [10] Ω = O(ES(HS)), where O(ES(HS)) is the
set of open subsets of ES(HS).

A quantum system S with:
(i) a Hilbert space HS , carrying a unitary representation of a Lie group,
(ii) physical attributes represented by self-adjoint operators in an O∗-algebraMS and
(iii) a state space ES(MS) of strongly positive, normalized linear functionals onMS ,
has qr-numbers that are sections of the sheaf of germs of continuous real-valued functions in the topos

Shv(ES(MS)). They contain the standard real numbers as globally constant functions. In the condition W ,
the attribute represented by the operator Â has the locally linear qr-number value a(W ) ∈ RD(ES(MS)), where
a(ρ) = TrρÂ; ∀ρ ∈W .

In general, for any non-empty open subset U of ES(M), any continuous function F : R→ R and any locally
linear function a(U) de�ned on U , F (a(U)) is a qr-number de�ned to extent U .

Measurement

The connection between the qr-number value of an attribute and the standard rational number obtained in an
experimental measurement depends on the fact that the latter is always obtained at a �nite level of precision.
In fact, every experiment has a con�dence level, 0 ≤ (1 − ε) ≤ 1 as well as a measure of precision κ > 0 [19],
when the con�dence level is unity, when ε = 0, the experimenter is has complete con�dence in the experimental
results, including the measure of precision..

The correspondence between the qr-number value of a physical quantity and a standard rational number
obtained in the measurement is elucidated through the process of ε sharp collimation [3] in a single slit. For a slit
with midpoint α and width 2κ, it is achieved when the system's condition W is such that both |a(W )− α| < κ
and |a2(W )− a(W )2| < εκ2. This gives a necessary (but not su�cient) criterion for its qr-number value to be
approximated by α with precision κ at the con�dence level 1− ε.

The Heisenberg inequality implies that when the position and conjugate momentum of a particle are simul-
taneously measured with precision κz and κp respectively and both with con�dence (1 − ε), then the product
κzκp ≥ ~/2ε. [3].
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We will assume that the level of con�dence for the whole double slit experiment has 0 < ε < 1
4 , a restriction

that is needed for various theorems, but for most experiments, (1− ε) is very close to 1, so no generality is lost.

The double slit slit experiment

The set-up of the experiment

We use cartesian coordinates ~x = (x, y, z); the motion of the electrons is restricted to be in the y, z plane with
the screens Σ1 and Σ2, each of thickness 2δy, lying along the lines y = yj , j = 1, 2 parallel to the z-axis.

The exit to S is an interval IS lying along the z-axis given by IS = ]zm − δx3, zm + δx3[ for small δx3, and
the momenta of the emitted particles are limited to the intervals J2 = ]py − δp2, py + δp2[ in the y-direction
and J3 = ] − δp3, δp3[ in the z-direction. The Heisenberg inequality for qr-numbers has both δp3δx3 >

~
2ε and

δp2δy >
~
2ε when both the position and momentum of an electron at S are assumed to be measurable with

con�dence (1− ε).
On Σ1 the barrier I0 has width 2δ2, both slits I± have width 2δ1. In the experiments δ2 = 10−3mm so that

the slits are much closer than they appear to be in the diagram, py = 1.2 × 105km/sec and t2 − t1 = 10−8sec.
The electrons exiting from S whose momentum in the z-direction is less than δp3 pass through a slit. zm is the
z-coordinate of the centre of the exit to the source S and the midpoint of the barrier I0, z± = zm ± (δ1 + δ2)
are those of the midpoints of I±.

Questions

The standard dilemma can be summarised as follows: for an electron emitted from S that is observed to arrive
on the screen Σ2 there are two alternatives, either the electron passed through I+ or it passed through I−, so
how can an interference pattern be built up after su�ciently many electrons have been observed on Σ2?

This can be subdivided into three questions.
A. Why can particles that have been prepared in a like manner be detected at di�erent spots on Σ2?
B. How does the interference pattern emerge as the accumulated e�ect of many single particle events?
C. How can a single particle pass through both slits and subsequently interfere with itself?

Answers

The �rst point is that in the standard description all measurements are assumed to be in�nitely precise: the
positions of the electrons are assumed to be given by standard real numbers and their measurement yields a
precise real number. In the qr-number description the positions of an electron are given by precise qr-numbers
but their measurement yields a standard real number that has only a �nite level of precision.
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A.Because "like manner" is with reference to the parameters of the experiment. These parameters empirically
determine a condition WS(ε) for the ensemble of prepared electrons; individual electrons can have di�erent
conditions Vα ⊂ WS(ε), all of which satisfy the experimental restrictions but because they di�er from each
other follow di�erent trajectories. We will call WS(ε) the epistemic condition of the ensemble and the open sets
Vα ⊂WS(ε) are called the ontic conditions of particular electrons.

B. Because the probability function for the ensemble of particles is obtained by collating all the outcomes for
all the individual particles. Since the epistemic condition is determined for the ensemble of electrons in which
each electron has an ontic condition Vα ⊂ WS(ε), we can adopt an ignorance interpretation for the statistics
because attributes having di�erent qr-number values on di�erent Vα have di�erent trajectories in the qr-number
space that produce di�erent outcomes on being measured.

C.Because locality in qr-number space is di�erent from locality in classical space. qr-number location has
two levels:

(i) If a|V < z(V ) < b|V , then the z-coordinate of the electron is weakly located in an interval J =]a, b[ when
the electron has the condition V .

(ii)The z-coordinate of the electron is ε strongly located in the interval J when the electron has the condition
V if

(1− ε)|V < πz(J)(V ) ≤ 1|V (1)

πz(J)(V ) is the qr-number value at V of the spectral projection operator, ÊẐ(J), of the operator Ẑ on the
interval J .

If an electron in the condition V is not ε strongly located in the interval J then it cannot be ε sharp collimated
in J and hence cannot be detected in J with con�dence level (1− ε) and measure of precision |J |/2. This means
that an electron can be weakly located in an interval without being capable of being observed.

Furthermore an electron's z-coordinate can have the qr-number value z(V ) where V = V1∪V2 with V1∩V2 = ∅
and the ranges, ranz(V1) ⊂ I+ and ranz(V2) ⊂ I−, lie in disjoint regions I± of classical space. Therefore an
electron could be weakly located in both slits I± but not ε strongly located in either of them and hence unable
to be detected in either slit. We say that an electron that is ε strongly collimated in a slit I and has momentum
to carry it through the slit will ε strongly passed through I.

Consequently for the qr-number description there are three alternatives for an electron emitted from S that
is observed to arrive on the screen Σ2: it could have ε strongly passed through I+, or ε strongly passed through
I−, or ε strongly passed through I+ ∪ I− but not separately through either I+ or I−.

Through the slits

For an electron to pass through the slits and be detectable at the con�dence level (1−ε), it must have a condition
V an open subset of the epistemic condition WT (ε) such that

πz(I+)(V ) + πz(I−)(V ) > (1− ε)|V (2)

Therefore there are three possibilities: (a) πz(I−)(V ) < (1−ε)|V , (b) πz(I+(V ) < (1−ε)|V , (c) both πz(I+)(V ) <
(1 − ε)|V and πz(I−)(V ) < (1 − ε)|V . This means that in an experiment with a con�dence level (1 − ε), the
epistemic condition, WT (ε), of the ensemble of detectable electrons that pass through the slits is composed of
three disjoint disjoint regions WT (ε) =

⋃
r=±,mWr(ε).

If Vα ⊂ WT (ε) then x3(Vα), x2(Vα) and p2(Vα) are ε strongly located and yield measured values with
con�dence (1− ε). p3(Vα) is only weakly located.

Theorem 1. If ε < 1
4 , and a particle has ontic condition Vα, then ;

if Vα ⊆W+(ε) then it can be observed to be ε strongly located in I+ but not in I−,
if Vα ⊆W−(ε) then it can be observed to be ε strongly located in I− but not in I+ and
if Vα ⊆Wm(ε) then it can be observed to be ε strongly located in I+ ∪ I− but not in either I+ or I− separately.

It is possible that an electron could have a condition Vα =
⋃
r=m,± V

r
α with V sα = Vα ∩Ws(ε).

The method of observing the ε strong location in either I+ or I− uses a detector behind the slit, but an
interference pattern is the evidence for ε strong location in I+ ∪ I− but not separately in either I+ or I−.
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Trajectories in qr-number space

An electron with condition Vα leaves Σ1 at t1 and moves freely to arrive at Σ2 at t2. It arrives at the location,

~x(Vα)(t2) = ~x(Vα)(t1) + ~p(Vα)(t1)
(t2 − t1)

m
, ~p(Vα)(t2) = ~p(Vα)(t1) (3)

For the ensemble of electrons observed at Σ2, x2(WT (ε))(tk) ≈ yk, k = 1, 2, p2(WT (ε)) ≈ py and t2 − t1 ≈
m (y2−y1)

py
when the separation between the screens is much greater than the spread of the electrons on Σ2.

The trajectories through I+ ∪ I−.
If Vα ⊂ Wm(ε), x3(Vα)(t1) is not ε strongly located in either of I+ or I− but is ε strongly located in I+ ∪ I−.
However since the distance between the slits is much less than the width of the slits, δ2 � δ1, there are two
disjoint open subsets V ±α ⊂ Vα such that x3(V +

α )(t1) is weakly located in I+ and x3(V −α )(t1) is weakly located
in I−.

The trajectory of an electron through I+ ∪ I− has two parts, s±(Vα),

� (s(V +
α )): goes from (x2(V +

α ), x3(V +
α )) to (x2(t2)(V +

α ), x3(t2)(V +
α )) with momentum (p2(V +

α ), p3(V +
α )),

� (s(V −α )): goes from (x2(V −α ), x3(V −α )) to (x2(t2)(V −α ), x3(t2)(V −α )) with momentum (p2(V −α ), p3(V −α )).

The paths are observed to arrive together in the neighbourhood Id of zd on Σ2, with |Id| = 2δd, when, if
Ud ⊂Wm(ε) is the largest open subset such that |x3(t2)(Ud)−zd1(Ud)| < δd, while x2(t2)(Ud) ≈ y2, both V

±
α are

contained in Ud. To within the experimental precision an observer would register x3(t2)(V +
α )) = x3(t2)(V −α ))

and deduce that

x3(V +
α )− x3(V −α ) = (p3(V −α )− p3(V +

α ))
(t2 − t1)

m
≈

(p3(V −α ))− p3(V +
α ))

(y2 − y1)

py
. (4)

This means that the paths can't meet on Σ2 unless the ratio of the separation between their initial z coordinates
and the di�erence in their velocities in the z direction is equal to the time taken for the electron to go from Σ1

to Σ2.

If equation (4) is satis�ed for Vα, then given any three of the initial qr-numbers
(x3(V −α ), x3(V +

α ), p3(V −α ), p3(V +
α )) the fourth is determined.

As x3(V ±α ) are weakly in I±, x2(V ±α ) ≈ y1 and py � p3(V ±α ), the di�erence between the lengths of the
paths, ∆L(Vα) = L(s+(Vα))− L(s−(Vα)) is

∆L(Vα) ≈ (x3(V +
α )− x3(V −α ))(p3(V +

α ) + p3(V −α ))

2py
. (5)

when they meet on Σ2.

As the distance between the screens is much larger than the distance between the the slits, (y3− y2)� 2δ2,

if θ(V ±α ) are the angles between the y axis and the straight line paths s(V ±α ) then ∆L(Vα)

(x+
3 (Vα)−x−3 (Vα))

≈ |θ(V +
α )−

θ(V −α )|.
Because the spread of the particles on Σ2 is small compared with the separation between the screens the

shift of the z coordinate of the meeting point from the centre point of Σ2 is approximately

(y2 − y1)|θ(V +
α )− θ(V −α )| = (p3(V +

α ) + p3(V −α ))(y2 − y1)

2py
. (6)

In particular, when (p3(V +
α ) + p3(V −α )) = 0 the two parts of the trajectory meet at the midpoint of Σ2.
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Wave aspects of the ensemble of electrons

The interference pattern can only be discerned when su�ciently many electrons have been observed on Σ2.
Therefore it through physical quantities that pertain to the ensemble labelled by open subsets of Wm(ε) that
the quantitative properties of the interference arise. For example the standard real number py is the measured
momentum in the x2 direction of all the electrons in the ensemble that are observed on Σ2. This means that
p2(Wm(ε)) must be ε sharply collimated in an in an interval centred on py > 0 and must be positive for the
electrons to travel from Σ1 to Σ2.

The de Broglie relation, λy = h
py
, between the momentum, py, and a length, λy, exists for all the electrons

in this ensemble. Then the maxima occur in the pattern where ∆L(Vα) is an integer multiple of λy, when

1

2
(x3(V +

α )− x3(V −α ))|(p3(V +
α ) + p3(V −α ))| = nh. (7)

These occur on Σ2 at locations whose z coordinates are approximately

(x3(V +
α ) + x3(V −α ))

2
± nh(y2 − y1)

(x3(V +
α )− x3(V −α ))py

≈ zm ±
nλy(y2 − y1)

(z+ − z−)
. (8)

Experimentally, the spacing between maxima

is approximately
(λy(y2−y1)

(z+−z−)

)
.

Detection of particles on Σ2

The dth detector: centred at zd, aperture Id with |Id| = 2δd, registers particles whose x3-coordinate is weakly
located in Id, but whose x2-coordinate is ε strongly located in an interval Iy =]y2 − δy, y2 + δy[ while its p2-
component of momentum is ε sharp collimated in an interval Ip =]py− δp, py + δp[. Therefore by the qr-number
version of Heisenberg's inequality δy ≥ 2~

εδp which implies that if ε < 1
π and if δp > py, to ensure that electrons

move from Σ1 to Σ2, the de Broglie wavelength λy equals the minimum possible half-width of the interval Iy.

If Ud is the largest open set such that x3(t2)(Ud) is weakly located in Id then x3(t1)(Ud) is weakly located in

an interval Ic on Σ1 that is centred on zd with half width δd + (t2−t1)
m δp3. If both I± ⊂ Ic then both V ±α ⊆ Ud

and both parts of the trajectory can end in Id if their momenta p3(V ±α ) satisfy equation (4).

It is only when the two parts of trajectories that passed through the two slits meet in Id on Σ2 that an
electron can be weakly located in Id and observed, of course if an electron only passed through one of the slits
and arrives in Id it can be observed there.

The interference formula

The qr-number probability that the αth electron, with condition Vα, is detected by the dth detector is
πz(Id)(t2)(Vα).

The probability that an electron from the ensemble of electrons prepared in the empirically determined
condition Wm(ε) is observed at the dth detector is πz(Id)(t2)(Wm(ε)).

If the union of all conditions Vα covers Wm(ε), then on collating the πd(t2)(Vα) the probability that an
electron is detected at the dth detector is πd(t2)(Wm(ε)) = ∪απz(Id)(t2)(Vα). This is assumed to be the case
when a large ensemble is used.

The standard quantum formula: there is only one ψ+ in P̂+H and only one ψ− in P−H so that there is only
one vector ψm = 1√

2 (ψ+ + ψ−) in PmH. Then we may take Wm(ε) = ν(ρm, ε) with ρm = |ψm〉〈ψm|.
Each ρ ∈ Wm(ε) satis�es Tr|ρ − ρm| < ε. Therefore |πd(t2)(Wm(ε)) − Tr(ρmP̂d(t2))| < ε so that the

qt-number probability of detecting an electron in Id is well approximated by

TrρmP̂d = 1
2 [〈ψ+, P̂dψ+〉+ 〈ψ−, P̂dψ−〉+ 〈ψ+, P̂dψ−〉+ 〈ψ−, P̂dψ+〉]. (9)

which is the standard interference formula for the two slit experiment.
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Discussion

This is a part of a project, [1]- [8], to make quantum theory complete in the sense of Einstein [9] (1921), �A
complete system of theoretical physics is made up of concepts, fundamental laws which are supposed to be
valid for those concepts and conclusions to be reached by logical deduction. It is these conclusions which must
correspond with our separate experiences;'.Some of the separate experiences of quantum-physics, mainly those
associated with measurements, cannot be deduced from the laws of the standard theory. Here we discuss one
such experience: the Bologna (1974) [11] and Hitachi (1989) [15] double slit experiments show single electrons
building up an interference pattern. This process cannot be described using the concepts and laws of standard
quantum mechanics. Richard Feynman [16] called it "a phenomenon which is impossible ... to explain in any
classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only mystery [of
quantum mechanics]."

The interference pattern is built up because more particles whose ontic conditions are subsets ofWm(ε) have
qr-number trajectories that are detected on Σ2 near points of "constructive interference" than are detected near
points of "destructive interference" and my conjecture is that these are determined by the conserved angular
momentum about the x axis, but I haven't been able to prove it.

This model of the experiment does not support the conjectures of C. Brukner and A. Zeilinger [17] concerning
the in�uence of an observer on the reality of the experiment. They claimed that "The observer can decide
whether or not to put detectors into the interfering path. That way, by deciding whether or not to determine
the path through the two-slit experiment, he can decide which property can become reality. If he chooses not
to put the detectors there, then the interference pattern will become reality; if he does put the detectors there,
then the beam path will become reality. Yet, most importantly, the observer has no in�uence on the speci�c
element of the world which becomes reality. Speci�cally, if he chooses to determine the path, he has no in�uence
whatsoever which of the two paths, the left one or the right one, Nature will tell him is the one where the particle
is found. Likewise, if he chooses to observe the interference pattern he has no in�uence whatsoever where in
the observation plane he will observe a speci�c particle. Both outcomes are completely random."

Of course the observer, by deciding how to set up the apparatus will determine the type of outcome, but the
qr-number model reveals that the reality is there independent of whether the observer decides to put a detector
immediately behind one of the slits or not. If an electron's condition is a subset of Wm(ε) then it can't be
detected at one slit, if it is a subset ofW+(ε) orW−(ε) then it will be detectable at the corresponding slit. After
the preparation of the electrons at the source S, the observer has no in�uence on the condition of a particle,
which is a randomly chosen open subset of the epistemic condition W (ε). The observer does not decide which
property can become reality, all he/she can do is to decide what part of reality to look for.

Appendices

Mathematical assumptions

Quantum real numbers

The quantum real numbers, RD(ES(MS)), for S have the following properties [14]:

1. The integers Z(ES(MS)) and the rationals Q(ES(MS)) are sheaves of locally constant functions
ES(MS)→ Z or Q.

2. They have orders < and ≤ compatible with those on Q(ES(MS)), but the order < is not total because
trichotomy; x > 0 ∨ x = 0 ∨ x < 0, is not satis�ed. The inequality ≤ is not equivalent to the disjunction of <
and =.

3. They are a residue �eld; closed under the commutative, associative, distributive binary operations + and
×, have 0 6= 1 and if a number b is not invertible then b = 0. If a = a(V ) and b = b(W ) with V,W ∈ O(ES(MS)),
then: a = b to an extent given by an open subset of W ∩ V . If a and b are locally linear qr-numbers de�ned by
operators Â and B̂ and they are equal on a non-empty open set then the de�ning operators are equal Â = B̂,
but the range of a(W ) being equal to the range of a(V ) does not imply that W = V .

4.The sum of a = a(V ) and b = b(W ) is de�ned pointwise: a + b = c where c is the continuous function
de�ned on W ∪ V which is equal to a+ b on W ∩ V , to a on W \ (W ∩ V ) and to b on V \ (W ∩ V ). Similarly,
their product a · b is de�ned on W ∩ V by a · b(x) = a(x)b(x);∀x ∈W ∩ V .
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5. They have a distance function | · | de�ning a metric. It is a complete metric space with Q(ES(MS)) dense
in it. A number b is apart from 0 i� |b| > 0. It is an apartness �eld, i.e., ∀b ∈ RD(ES(MS)), |b| > 0 i� b is
invertible.

6. They are not Dedekind complete, as least upper bounds need not exist and they are not Archimedean,
because there are in�nitesimal qt-numbers. For example, the expectation value a(ρ0) = Trρ0Â for a given state
and a given operator is an in�nitesimal qr-number because there is no open set V 6= ∅ such that a(ρ0)|V >
0 ∨ a(ρ0)|V < 0.

Quantum space

The spatial continuum in which quantum phenomena take place is not assumed to be classical, The quantum
space for a quantum particle S is RD(ES(MS))3, a vector space over the globally constant classical real numbers.
Cartesian coordinate axes parametrized by AaQ(ES(MS)) for a = x, y, z, generated by the position operators
X̂, Ŷ and Ẑ. [4]

The quantum "points" are triplets ~xQ(W ) = (xQ(W ), yQ(W ), zQ(W )) for W ∈ O(ES(MS)). They are
not classical points, but are open sets. [10] The qr-number distance between A = ~xQ(W ) and B = ~xQ(V ) is
dQ(A,B)(U) =
(|xQ(W ∩U)− xQ(V ∩U)|2 + |yQ(W ∩U)− yQ(V ∩U)|2 + |zQ(W ∩U)− zQ(V ∩U)|2)1/2 for any open set U .
If W ∩ V = ∅ then d(A,B)(U) > 0,∀U ∈ O(V ∪W ), if W ∩ V 6= ∅ then d(A,B)(U) = 0, ∀U ∈ O(V ∩W ).

The dQ de�nes a pseudo-metric which is a metric for quantum points that are apart. [14] Apartness is
stronger than not equal to, as ~xQ(W ) 6= ~xQ(V ) i� W 6= V , but ~xQ(W ) is apart from ~xQ(V ) i� W ∩ V = ∅. In
the quantum continuum not all pairs of di�erent quantum points are apart.

Physical properties

Dynamics

The evolution of two quantum particles S andM with non-zero mass can be described: either
(1) by Hamiltonian equations motion for the qr-number values of the canonical position and momentum at-
tributes of the systems. The qr-number Hamiltonian is a function of ~xK(W (S,M)), ~pK(W (S,M)), K = S,M ,
or
(2) by changes in the condition of the joint system controlled by Ût, the Schr�odinger evolution of its states, or
(3) by changes in the operators of the joint systems using Heisenberg's equations,
(2) and (3) are globally equivalent and give the same outcomes as (1) when canonical position and momentum
attributes are available and the forces are linear. The linear forces include the free motion, the harmonic os-
cillator and the Coulomb (via Bohlin's theorem) and the von Neumann impulsive interactions, as well as the
controlled shifts of Zurek . If the forces are not linear but are smooth functions of the variables ~xK(W0(S,M))
then (2) and (3) have equations that closely approximate those of (1) on a collection of open sets that don't
cover ES(AS,M ) but are su�cient for the collection of quantum points {~xK(W̃0(K))}; K = S,M , to cover the
classical space R3 [2].
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Abstract: In classical physics the joint probability of a number of individually rare independent events
is given by the Poisson distribution. In quantum mechanics, the same law rare events describes, for
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Introduction

In classical physics and statistics, probability for a number of individually rare events is universally given by
the Poisson distribution (see, for instance, [1]). For example, consider a test tube divided in two parts by a
penetrable membrane. Let p(t) be the probability for an atom of ideal gas cross to cross the membrane from
either side during a time t. Then place a large number of non-interacting classical atoms, N >> 1, in, say, the
left half, and reduce the individual transition probability, p(t) = w(t)/N , keeping w �nite. At any �nite time,
here will be atoms which have crossed the membrane from left to right, but practically no atoms recrossing from
right to left. Since the probability to cross the membrane is extremely small, and the number of atoms in the
right half is �nite, the recrossing process is highly improbable. Should one prepare many such test tubes, the
number of particles which have escaped to the right by a time t will be distributed according to the Poisson law,
also known as the the Law of Rare Events (LRE). One might ask whether this is also always true in quantum
mechanics? The question was studied in [2].

Let us replace the divided test tube by a double well potential in one dimension. While the barrier dividing
the two wells is impenetrable, there are two similar energy levels, one on the right and one on the left (see the
sketch in Fig.1). Such a structure can be created using modern laser techniques (see, for example, [3]). Now we
can populate the level on the left with a large number of non- or weakly-interacting atoms, N , and lower the
barrier so as to allow the atoms to escape into the right well by tunnelling. There are two main di�erences from
our classical example. Firstly, quantum mechanics operates with probability amplitudes, rather than directly
with the probabilities. Secondly, all atoms in the same internal state are identical bosons (we cannot of course
put several fermions on the same level, so bosons they are). If N is large, and tunnelling is improbable, will the
numbers of escaped atoms di�er signi�cantly from those predicted by the classical LRE?

Single-particle transition amplitudes and probabilities

We start by constructing transition amplitudes for a single atom which can occupy one of the two levels in an
asymmetric double well potential. It is convenient to write the Hamiltonian in terms of the Pauli's matrices,

Ĥ = εσz + ξσx + ησy, (1)

where the spin states |1〉 and |2〉, aligned up and down the z-axis, correspond to an atom occupying the right
and the left well, respectively. The constants ε, ξ and η are at our disposal. For the evolution operator
Û(t) = exp(−iĤt) we have

Û(t) = I cos(ωt)− iω−1[εσz + ξσx + ησy] sin(ωt), (2)
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Figure 1: Double-well trap containing N atoms. The central barrier is lowered to allow tunnelling between the
states |1〉 and |2〉. [2]

where we have de�ned ω =
√
ε2 + ξ2 + η2. Its matrix elements, Ui,j(t), are the complex valued probability

amplitudes for a single atom, initially in the state |j〉, to end up in the state |i〉 after a time t. We can write
them as (a star indicates complex conjugate)

U11 =
√

1− p exp(iα) = U∗22 (3)

U12 =
√
p exp(iβ) = −U∗21

where, with our choice of the basis, p(t) = (ξ2 + η2) sin2(ωt)/ω2 is the one-particle transition probability,
α(t) = − arctan[ε tan(ωt)/ω] and β = −π/2. Our experiment is as follows: given a total of N atoms, we put
m of them in the right well, lower the barrier to allow tunnelling, and ask what is the chance of �nding m′

particles on the right after a time t. In other words, we wish to evaluate the transition probabilities pNm′m(t) for
starting with m particles in the state |1〉 and ending, after a time t, with m′ particles in the same state.

The classical N-coin problem. Paths and pathways

Before considering identical bosons, it is worth looking at what would have happened had all the atoms been
distinguishable. The problem is equivalent to a classical N -coin one: given that each coin changes its state with
a probability p, and m coins initially heads up, what is the probability to have m′ heads up after each coin has
been tossed once? There is more than one way to reach the desired con�guration. For m′ = m+ 1 we can �ip
just one coin from tails to heads. Or we can �ip one coin from heads to tails, and then two tails left to heads,
and so on. In general, the same result can be achieved by moving ν coins from tails to heads, and µ coins
from heads to tails, provided ν − µ = m′ −m. The total probability of each such process, pν+µ(1 − p)N−µ−ν
depends only on ν and µ. But then we can choose the µ particular coins to be �ipped from heads to tails in
Cmµ di�erent ways, where Ckl ≡ k!

l!(k−l)! is the binomial coe�cient. Similarly, there are C
N−m
ν ways to choose

the coins to be �ipped the other way. Quantum mechanics often uses words lake 'paths' and 'pathways', and we
will call a path a particular way to rearrange the coins, and a pathway the union of paths in which µ and ν coins
change their states, as was discussed above. The probability for a pathway de�ned by the values (µ, ν) is then
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m
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Figure 2: A diagram showing the region of summation in Eqs. (4) and (9) (�lled dots). Each dot contributes

Cmµ C
N−m
ν pν+µ(1−p)N−µ−ν for distinguishable particles, and Cmµ CN−mν (−1)µUν+µ

12 Um−µ11 UN−µ−µ22 for identical
bosons. [2]

Cmµ C
N−m
ν pν+µ(1− p)N−µ−ν . The full transition probability pNm′m(t) is given by the sum over all pathways,

pNm′←m =

m∑
µ=0

N−m∑
ν=0

Cmµ C
N−m
ν pν+µ(1− p)N−µ−νδν−µ,m′−m (4)

where the Kroneker delta, δmn, ensures the correct �nal number of heads up. The above is illustrated in the
diagram in Fig.2, where each dot corresponds to a pathway (µ, ν), and the summation in Eq.(4) is over dots
lying along the line ν = µ + m′ −m. Depending on N , m and m′, the sum in Eq.(4) may contain a di�erent
number of terms, corresponding to various pathways connecting the initial and �nal states labelled by m and
m′, respectively.
For our distinguishable atoms any two N -particle states which di�er in the position of at least one atom are
orthogonal. Thus, all paths lead to distinguishable outcomes and are exclusive alternatives in the language
of [4]. Summing the probabilities over the paths we see that pNm′m(t) is given by Eq. (4), with the one-particle
probability p de�ned in Eqs.(3)

The classical law of rare events

In the rare events (RE) limit we let the total number of particles in the left well, N−m, increase, while reducing
proportionally the likelihood for each atom to tunnel

N →∞, p→ w/N. (5)

It is su�cient to retain only the leading µ = 0 terms in the sum (4) which are the only non vanishing contribu-
tions. These are represented by the dots in the lowest row of diagram in Fig.2 in (4) and carry the probability
weights CN−mν pν(1− p)N−µ. Using the relation limN→∞C

N
m = Nm/m! for the binomial coe�cient, yields the
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Figure 3: Poissonian probability pNm′←m for distinguishable particles, as given by Eq.(4), for N = 105 and
w = 3. The white line marks m = m′. [2]

Poisson distribution,

lim
N→∞

pNm′←m =

{
wq exp(−w)/q! q ≡ m′ −m ≥ 0

0 q < 0,
(6)

shown in Fig.3.
This is what one would expect. Consider for example a symmetric trap with ε = 0. Reducing the transition
probability in (5) we also make the Rabi period 2π/ω after which the system must return to its initial state,
extremely large. Now, for all t << 2π/ω, escape of atoms into the right trap can be considered practically
irreversible, with the number of particles arriving there, q, independent of the number of particles, m, already
there. Low probability of each individual event, and much lower population in the right well make re-crossings
from right to left statistically insigni�cant (see Fig.3). In particular, after detecting m particles in the right
well, one never �nds it empty again, as the probability pN0←m (the left upper corner in the diagram in Fig. 2),
vanishes as (w/N)m exp(−w). One might expect a similar argument to apply if the non-identical particles are
replaced with non-interacting bosons. Next we will show that this is not the case.

Identical bosons and a quantum N-coin problem

For identical particles, there is no way to distinguish the states in which, say, the �rst or the second boson has
escaped into the right well. It is not that one does not know which of the two processes has occurred. One
cannot know, as the the two scenarios now lead to the same �nal state, and are interfering alternatives in the
language of [4]. In quantum mechanics two interfering paths cannot be distinguished. Such paths should be
considered a single route, and their amplitudes, rather than the probabilities, must be added.
Thus, for identical bosons we have a quantum version of the N -coin problem: after a toss each coin changes its
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state from |i〉 to |j〉, i, j = 1, 2 with the probability amplitude Uji, and we must sum amplitudes rather than
probabilities over all pathways leading to the same �nal outcome. The state of the system with any m coins
displaying heads is given by a symmetrised wave function

|m,N〉 = (CNm )−1/2
∑ N∏

j=1

|ij〉j , ij = 1, 2 (7)

where |i〉j , i = 1, 2 indicated the state if the j-th particle, and the sum is over CNm di�erent ways to ascribe to
m of the N indices ij the value of 2, and to the remaining N −m ones the value of 1. After all coins are tossed
once each individual term in the sum of Eq.(1) contributes to the amplitude to have m′ heads up a quantity

f(m′ ← m,N) = (CNm )−1/2(CNm′)
−1/2

×
m∑
µ=0

N−m∑
ν=0

Cmµ C
N−m
ν Uν12U

µ
21U

m−µ
11 UN−m−ν22 δm′−m,ν−µ, (8)

with the region of summation shown in Fig.2. Since Eq.(1) contains CNm such terms, the probability PNm′←m to
have m′ heads up after the toss is (we are using a capital P to distinguish it from the classical probability (4))

PNm′←m = (CNm )2|f(m′ ← m,N)|2, m,m′ = 0, 1, ...N.

It turns out that PNm′←m can be expressed in terms of the Jacobi polynomials P(α,β)
n (x) [7]�[9]

PNm′←m =
m!(N −m)!

m′!(N −m′)!
pm
′−m(1− p)N−m

′+m

|P(N−m′−m,m′−m)
m (2p− 1)|2. (9)

As in the case of distinguishable particles, PNm′←m depends only on the one-particle transition probability p, and
not of the phases α and β of the matrix elements of of Uij in Eq.(3). It is shaped by the interference between
the pathways shown in Fig.2. Interesting e�ects are possible due to the minus sign in the second of Eqs.(3), as
the amplitudes for moving di�erent number of particles from right to left may have di�erent signs.
We note also that in the special case of tunnelling into an initially empty well, m = 0, there is only one pathway
corresponding to moving exactly m particles from left to right. In the absence of interference. transition
probabilities for distinguishable particles and identical bosons coincide,

PNm′←0 = pNm′←0 = CNm′p
m′(1− p)N−m

′
, (10)

as was pointed out earlier in the Refs. [5] and [6].

The quantum law of rare events

More interesting, however, are the transitions a�ected by the interference e�ects which, as we will demonstrate,
persist even in the RE limit (5). Since the sum in Eq.(2) contains

√
p which decreases with N slower that p,

(and the same statistical weights Cmµ C
N−m
ν ), we cannot limit ourselves to just the µ = 0 terms as N →∞ and

p → 0. With several terms retained in the sum (2), the interference is still possible, and as we will show next,
the result is very di�erent for the classical LRE (6)
Thus, after taking the limit (5), we have (q = m′ −m)

lim
N→∞

PNm′←m = wq exp(−w)|
m∑

µ=max[0,−q]

√
m′!m!(−w)µ

µ!(m− µ)!(q + µ)!
|2, (11)

shown in Fig.4. Equation (11), which is our central result1, replaces the classical Poisson law (6) for non-
interacting identical bosons. Some of its properties are counterintuitive.

1Equation (11) can be simpli�ed further by exploring the asymptotic behaviour of Jacobi polynomials in the limit (5) e.g.,
by the methods of Ref. [9], but we will not pursue it further.
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Figure 4: (Color online) Non-poissonian probability PNm′←m for identical bosons, as given by Eq.(9), for N = 105

and w = 3. The section of the surface indicate by arrow corresponds to PN0←m also shown in Fig.4. [2]

Unlike the Poisson distribution (6), PNm′m Eq.(11) is highly structured, as a results of the interference between
the pathways shown in Fig.2.
There is a much broader spread in the �nal number of escaped atoms for a given m.
Finally, it allows for a total or partial recapture of the few particles initially held in the right well into the
left densely populated well, contrary to the simple argument based on improbability of such an event. The
probability PN0←m, which corresponds to the left face of the surface in Fig.4, is seen to peak at m ≈ w. In
general, the probability for all m bosons to cross into the left well, PN0←m, contains only one term in the sum
(11) [the left upper corner, (µ = m, ν = 0), in the diagram in Fig. 2]. After taking the limit (5) we �nd that

PN0←m = wm exp(−w)/m!, (12)

is a Poisson distribution shown in Fig.5. (Here we stop brie�y to admire the resilience of the Poisson's law
which, after being dismissed from Eq.(11), immediately reappears in Eq.(12) in its new role.) The complete
recapture process exhibits certain preference for the number of atoms to be readmitted into the left well, and
is most likely for m ≈ w, i.e., for m equal to the mean number of distinguishable particles which would cross
into the right well under the same conditions.
To obtain the probability of a partial recapture process, such that 1, 2, ...(m−1) atoms remain in the right well
at the time of observation, we must cut the surface in Fig.4 along the line m′ = 1, 2, 3.... These probabilities
are structured, as shown in Fig.6. For m > 1 and m′ = 1, there are two interfering scenarios leading to just one
particle being left in the right well [points (µ = m− 1, ν = 0) and (µ = m, ν = 1) in Fig.2 ]. The corresponding
probability PN1←m is bimodal as shown in Fig. 6 by a dashed line.
The no-change probability to retain the same number of atoms in the right well, PNm←m, builds up from m+ 1
interfering terms and also shows an oscillatory pattern shown in Fig.6 (long dashed).
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Conclusion and discussion

For a brief summary, consider two states available to N particles. There are many ways (scenarios) to rearrange
the particles changing their number form m to m′ in, say, the �rst state. In quantum mechanics, all such
scenarios are exclusive if the particles are distinguishable. If N is large, and each particle is unlikely to change
its state, one sums the probabilities to obtain the classical Poisson law of rare events (6).
If the particles are bosons, the scenarios interfere. Summing the amplitudes, rather than probabilities, one
obtains the quantum law of rare events (11), which di�ers signi�cantly from its classical counterpart (6). For
example, instead of always escaping from the densely populated state, the bosons may return to it.
Seen di�erently, even non-interacting bosons are not entirely independent and must exhibit some collective
behaviour owing to the symmetry of the bosonic wave function. The symmetry is responsible, for example, for
the 'bunching' e�ects in statistical properties of bosonic systems [10]- [14]. This collectivism makes possible the
return of a few escapees to the state where most of their comrades are held. In is interesting to note, however,
that this e�ect persist even in the limit when the escapes are infrequent and improbable, that is, in the limit of
rare events.

We acknowledge support of the Basque Government (Grant No. IT-472-10), and the Ministry of Science
and Innovation of Spain (Grant No. FIS2009-12773-C02-01).

References

[1] Haight, F. A. 1967 Handbook of the Poisson Distribution. New York: John Wiley and Sons.

[2] Sokolovski, D. 2013 Phys. Rev. Lett. 110, 115302.

[3] Meyrath, T. P., Schreck, F., Hanssen, J. L., Chuu, C.-S. and Raizen, M. G. 2005 Phys. Rev. A71, 041604R.

[4] Feynman, R. P. and Hibbs, A. R. 1965 Quantum Mechanics and Path Integrals. New York: McGraw-Hill.

[5] Sokolovski, D. and Gurvitz, S. 2009 Phys. Rev. A79, 032106.

[6] Sokolovski, D. 2009 Phys. Rev. Lett. 102, 230405.

[7] Abramowitz, M. and Stegun, I. A. 1964 Handbook of Mathematical Functions, Applied Mathematics Series. U.S.
GPO, Washington, DC.

[8] Wimp, J., McCabe, P. and Connor, J. N. L. 1997 J. Comp. and Appl. Math. 82, 447.

[9] Dunster, T. M. 1999 Methods and Applications of Analysis. 6, 21.

[10] Javanainen, J. and Ivanov, M. Yu. 1999 Phys. Rev. A60, 2351.

[11] Klich, I. 2003 In Quantum Noise in Mesoscopic Physics, edited by Yu. V. Nazarov. Kluwer, Dordrecht, the Nether-
lands, e-print arXiv:cond-mat/0209642.

[12] Budde, M. and Moelmer, K. 2004 Phys. Rev. A70, 053618.

[13] Harbola, U., Esposito, M. and Mukamel, S. 2007 Phys. Rev. A76, 085408.

[14] Sokolovski, D., Pons, M., del Campo, A. and Muga, J. G. 2011 Phys. Rev. A83, 013402.



34

Stochastic Representation of Quantum Mechanics and Soli-
tons

Yu.P. Rybakov
Department of Theoretical Physics
Peoples' Friendship University of Russia
117198 Moscow, 6, Mikluho�Maklay str., Russia
E-mail: soliton4@mail.ru

Abstract: Stochastic realization of the wave function in quantum mechanics, with the inclusion
of soliton representation of extended particles, is discussed. Entangled solitons construction being
introduced in the nonlinear spinor �eld model, the Einstein�Podolsky�Rosen (EPR) spin correlation is
calculated and shown to coincide with the quantum mechanical one for the 1/2-spin particles.

Keywords: solitons, entangled states, spin-statistics correlation, wave-particle dualism
PACS: 03.65.Ta; 03.50.Kk
Received: 7 of December, 2013 Accepted: 30 of December, 2013

Introduction. Wave�particle dualism and solitons

As a �rst motivation for introducing stochastic representation of the wave function let us consider the de Broglie
plane wave

ψ = Ae−ikx = Ae−iωt+i(kr) (1)

for a free particle with the energy ω, momentum k, and mass m, when the relativistic relation

k2 = ω2 − k2 = m2 (2)

holds (in natural units ~ = c = 1).
Suppose, following L. de Broglie [1] and A. Einstein [2], that the structure of the particle is described by a

regular bounded function u(t, r), which is supposed to satisfy some nonlinear equation with the Klein�Gordon
linear part. Let `0 = 1/m be the characteristic size of the soliton solution u(t, r) moving with the velocity
v = k/ω.

Now it is worth-while to underline the remarkable fact behind this research [3], namely, the possibility to
represent the de Broglie wave (1) as the sum of solitons located at nodes of a cubic lattice with the spacing
a� `0:

Ae−ikx =
∑
d

u(t, r + d), (3)

where d marks the positions of lattice nodes. To show the validity of (3) one can take into account the asymptotic
behavior of the soliton solution in its tail region:

u(x) =

∫
d4k e−ikxg(k)δ(k2 −m2) (4)

and then use the well-known formula∑
d

ei(k d) =

(
2π

a

)3

δ(k), (5)

implying that

A =

(
2π

a

)3
g(m)

2m
.

The formula (3) gives a simple illustration of the wave-particle dualism, showing that the de Broglie wave
characterizes the assemblage of particles-solitons.
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D. Bohm's principle of nonlinear resonance and its gravitational mech-
anism

As a point of departure we consider the following problem posed by D. Bohm. Many years ago he discussed in
his book [4] the possible relation between the wave-particle dualism in quantum mechanics and nonlinearity of
fundamental equations in future theory of elementary particles. To represent the line of D. Bohm's thought, let
us consider in Minkowsky space-time a simple scalar �eld model given by the Lagrangian density

L = ∂iφ
∗∂jφ η

ij − (mc/~)
2
φ∗φ+ F (φ∗φ) . (6)

Here φ designates complex scalar �eld, i, j = 0, 1, 2, 3; ηij = diag(1,−1,−1,−1), and the nonlinear function
F (s) behaves at s→ 0 as sn, n>1, to guarantee the existence of particle-like solutions to the corresponding �eld
equations, that is describing localized regular con�gurations possessing �nite energy. In particular, the choice
F (s) = g s3/2, g>0, in (6) corresponds to the well-known Synge model [5], which is popular in nuclear physics
and admits stationary radial solutions of the form

φ0 = u(r) exp(−iωt), r = |r| . (7)

The radial function u(r) in (7) is regular and exponentially decreases at space in�nity, thus implying the
�niteness of the energy

E =

∫
d3xT 0

0 (φ0), (8)

where T ij stands for the energy-momentum tensor of the �eld model in question. Moreover, it can be shown
that the unnodal con�guration, for which u(r) >0, turns out to be stable in the Liapunov's sense, if the charge
of the con�guration is �xed [6]. This fact implies the existence of slightly perturbed soliton solutions similar to
(7):

φ = φ0 + ξ(t, r). (9)

It should be stressed that the perturbation ξ in (9) appears to be small with respect to φ0 in the region of
soliton's localization only, though in the �tail" region of the soliton (i.e. far from its center) the function φ0 is
small, so one can put φ = ξ.

D. Bohm posed the following question: Does there exist any nonlinear �eld model, for which the asymptotic
behavior of the perturbed soliton solution, at large distances from the soliton's center, would represent the
oscillations with the characteristic frequency ω = E/~? In other words, for the model in question the principal
Fourier amplitude of the �eld φ ≈ ξ at large distances r →∞ should correspond to the frequency ω related to
the soliton's energy (8) via the Planck�de Broglie formula

E = ~ω. (10)

This property will be called the Bohm's principle of nonlinear resonance.
As one can see from (6), the �eld equation at space in�nity, where φ→ 0, reduces to the linear Klein�Gordon

equation(
�− (mc/~)

2
)
φ = 0. (11)

Therefore, the relation (10) can be satis�ed for the solitons with the single energy E = mc2, determined by the
�xed mass m represented in (6). Thus, we conclude that the universality of the Planck�de Broglie relation (10)
appears to be broken for the model (6), that forces us to modify the latter one. Taking into account that the
frequency in (10) is determined by the mass of the localized system, it seems natural to use in the new modi�ed
model the proper gravitational �eld of the particle-soliton, in view of the fact that its asymptotic behavior at
space in�nity is also determined by the mass of the system. Finally, it is suggested to search for the answer to
the Bohm's question in the self-consistent gravitational theory [7, 10].
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The new model will be described by the Lagrangian density L = Lg + Lm, where Lg = c4R/(16πG)
corresponds to the Einstein gravitational theory and Lm is written as follows:

Lm = ∂iφ
∗∂jφ g

ij − I(gij)φ
∗φ+ F (φ∗φ). (12)

The crucial point in this scheme is the constructing of the invariant I(gij), which should depend on the
metric tensor gij of the Riemannian space-time in such a manner that in the vicinity of the soliton with a mass
m the following relation took place:

lim
r→∞

I(gij) = (mc/~)2. (13)

It can be easily seen that due to (13) one �nds at space in�nity the universal equation (11), which is valid
for the soliton con�guration with an arbitrary mass m.

To show the existence of the invariant I with the property (13), one could construct it through the Riemann
curvature tensor Rijkl and its covariant derivatives Rijkl;n:

I = (I4
1/I

3
2 )c6~−2G−2, (14)

where G stands for the Newton gravitational constant and invariants I1, I2 have the form:

I1 = RijklR
ijkl/48, I2 = −Rijkl;nRijkl;n/432.

Calculating Rijkl and invariants I1, I2 via the Schwarzschild metric at large distance r from the soliton's
center, that seems reasonable for the isolated island-like systems, one �nds

I1 = G2m2/(c4r6); I2 = G2m2/(c4r8). (15)

Thus, the relations (14) and (15) imply the desirable property (13) and the validity of the Bohm's principle of
nonlinear resonance in its gravitational realization, that is the Planck�de Broglie wave-particle dualism relation
(10) holds for all massive particles described by regular localized �eld con�gurations.

Now the next problem arises: to prove the consistency of the Einstein�de Broglie solitonian scheme, com-
plemented by the Bohm's nonlinear resonance principle, with the main axioms of quantum mechanics. This
problem was discussed in the works [8, 13] and it was shown that in the limit of point-like particles the main
quantum postulates could be retained. In particular, it turned out that on the base of solitonian �eld con�gu-
rations one could build the analog of the probability amplitude (wave function) and the mean values of physical
observables could be calculated as scalar products in a suitable Hilbert space with the stochastic properties.

Random Hilbert space

The shortest way to get the stochastic representation of quantum mechanics is to modify the formula (3).
This can be easily performed if one admits that the locations of solitons' centers are not regular nodes of the
cubic lattice but some randomly chosen points. To realize this prescription, suppose that a �eld φ describes n
particles-solitons and has the form

φ(t, r) =

n∑
k=1

φ(k)(t, r), (16)

where

suppφ(k) ∩ suppφ(k′) = 0, k 6= k′,

and the same for the conjugate momenta

π(t, r) = ∂L/∂φt =

n∑
k=1

π(k)(t, r), φt = ∂φ/∂t.
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Let us de�ne the auxiliary functions

ϕ(k)(t, r) =
1√
2

(νkφ
(k) + iπ(k)/νk) (17)

with the constants νk satisfying the normalization condition

~ =

∫
d3x |ϕ(k)|2. (18)

Now we de�ne the analog of the wave function in the con�gurational space R3n 3 x = {r1, . . . , rn} as

ΨN (t, r1, . . . , rn) = (~nN)−1/2
N∑
j=1

n∏
k=1

ϕ
(k)
j (t, rk), (19)

where N � 1 stands for the number of trials (observations) and ϕ
(k)
j is the one-particle function (7) for the

j�th trial.
Now we intend to show that the quantity

ρN =
1

(4∨)n

∫
(4∨)n⊂R3n

d3nx |ΨN |2 ,

where4∨ is the elementary volume which is supposed to be much greater than the proper volume of the particle
`0

3 = ∨0 � 4∨, plays the role of coordinate probability density. To this end let us calculate the following
integral:

(4∨)
n
ρN ≡

∫
(4∨)n

d3nx |ΨN |2 = (~nN)
−1

 N∑
i=1

aii +

N∑
i 6=j=1

aij

 ,

where the denotation is used

aij = 1
2

n∏
k=1

∫
4∨

d3x
(
ϕ
∗(k)
i ϕ

(k)
j + ϕ

∗(k)
j ϕ

(k)
i

)
.

Taking into account (19), one gets

(4∨)
n
ρN = (~nN)

−1
(~n4N + S) , S =

∑
i 6=j

aij , (20)

with 4N standing for the number of trials for which the centers of particles-solitons were located in (4∨)
n
.

It is worth-while to remark that due to independence of trials and arbitrariness of initial data and, in

particular, of the phases of the functions ϕ
(k)
i , one can consider the entities aij for i 6= j as independent random

variables with zero mean values. This fact permits one to use the Chebyshev's inequality [14] for estimating the
probability of the events, for which |S| surpasses ~n4N :

P (|S| > ~n4N) ≤ (~n4N)
−2 〈

S2
〉
. (21)

On the other hand, in view of trials' independence one gets〈
S2
〉

=
∑
i 6=j

〈
a2
ij

〉
. (22)

Now one can take into account that the wave packets ϕ
(k)
i are e�ectively overlapped if their centers belong

to the proper volume domain ∨0. This property permits to deduce from (19) and (22) the estimate〈
S2
〉
≤ αn~2n 4N

(4∨)n
∨0

n4N, (23)
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where α ∼ 1 is the �packing" factor for the nearest neighbors. Inserting (23) into (22), one �nds the following
estimate:

P (|S| > ~n4N) < (α ∨0 /4∨)
n � 1. (24)

Applying the estimate (24) to (20), one can state that with the probability close to unity the following
relation holds:

(4∨)
n
ρN = 4N/N, (25)

signifying that the construction (19) plays the role of the probability amplitude for the coordinate distribution
of solitons' centers, with ρN in (25) being the corresponding probability density.

Now let us consider the measuring procedure for some observable A corresponding, due to E. Noether's
theorem, to the symmetry group generator M̂A. For example, the momentum P is related with the generator of
space translation M̂P = − i5, the angular momentum L is related with the generator of space rotation M̂L = J
and so on. As a result one can represent the classical observable Aj for the j-th trial in the form

Aj =

∫
d3xπj iM̂Aφj =

n∑
k=1

∫
d3xϕ

∗(k)
j M̂

(k)
A ϕ

(k)
j .

The corresponding mean value is

E(A) ≡ 1

N

N∑
j=1

Aj =
1

N

N∑
j=1

n∑
k=1

∫
d3xϕ

∗(k)
j M̂

(k)
A ϕ

(k)
j

=

∫
d3nxΨ∗N ÂΨN +O(

∨0

4∨
), (26)

where the Hermitian operator Â reads

Â =

n∑
k=1

~M̂ (k)
A . (27)

Thus, up to the terms of the order ∨0/4∨ � 1, we obtain the standard quantum mechanical rule (26) for the
calculation of mean values [8, 9].

It is interesting to underline that the solitonian scheme in question contains also the well-known spin-

statistics correlation [10]. Namely, if ϕ
(k)
j is transformed under the rotation by irreducible representation D(J)

of SO(3), with the weight J , then the transposition of two identical extended particles is equivalent to the

relative 2π�rotation of ϕ
(k)
j , that gives the multiplication factor (−1)2J in ΨN . To show this property, suppose

that our particles are identical, i.e. their pro�les ϕ
(k)
j may di�er in phases only. Therefore, the transposition of

the particles with the centers at r1 and r2 means the π�rotation of 2�particle con�guration around the median
axis of the central vector line r1− r2. However, due to extended character of the particles, to restore the initial
con�guration, one should perform additional proper π�rotations of the particles. The latter operation being
equivalent to the relative 2π�rotation of particles, one concludes that it results in aforementioned multiplication
of ΨN by (−1)2J . Under the natural supposition that the weight J is related with the spin of particles-solitons,
one infers that the many�particles wave function (19) should be symmetrical under the transposition of the two
identical particles if the spin is integer, but antisymmetrical if the spin is half-integer (the Pauli principle).

Thus, we conclude that in the solitonian scheme the spin�statistics correlation stems from the extended
character of particles�solitons. However, the particles in quantum mechanics being considered as point-like
ones, it appears inevitable to include the transpositional symmetry of the wave function as the �rst principle
(cf. Hartree�Fock receipt for Fermions).

It can be also proved that ΨN up to the terms of order ∨0/4∨ satis�es the standard Schrödinger equation [10].
To this end it is worth-while to underline that, in accordance with the Bohm's nonlinear resonance principle
(13), in the vicinity of the k-th particle the Klein�Gordon equation (11) with the particle's mass mk is satis�ed.
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However, at large distances the same equation (11) is valid but with the mass M , equal to the total mass of the
system. In view of this fact, it is useful to divide the �eld con�guration ϕ(k) into two parts as follows:

ϕ(k) = ϕ
(k)
0 + ϕ(k)

∞ , (28)

where ϕ
(k)
0 describes the nearest structure (highly decreasing function) and ϕ

(k)
∞ describes the far one (slightly

decreasing function). According to (11), in the proper reference frames of the k�th particle and of the total
system respectively, one �nds the following time behavior of these functions:

ϕ
(k)
0 ∼ e−imkc

2t/~, ϕ(k)
∞ ∼ e−iMc2t/~. (29)

Inserting (28) in (19), one gets for rj →∞

n∏
k=1

ϕ(k) =

n∏
k=1

(
ϕ

(k)
0 + ϕ(k)

∞

)
≈ ϕ(k)

∞

∏
k 6=j

ϕ
(k)
0 . (30)

In view of (29) and (30) one concludes that at rj →∞

ΨN ∼ e−iMc2t/~. (31)

On the other hand, given the �eld Hamiltonian H[φ, π] of the system, one can write the �eld equations in the
canonical form, that results in the evolution law of ϕ(k):

i∂tϕ
(k) = δH/δϕ∗(k). (32)

Therefore, combining (19) and (32), one gets the evolution equation for ΨN :

i~ ∂tΨN = ~
n∑
k=1

N∑
j=1

δH

δϕ
∗(k)
j

∂ΨN

∂ϕ
(k)
j

≡ ĤΨN , (33)

which has the standard quantum mechanical form with some generalized Hamilton operator Ĥ. As follows from
(31), the operator Ĥ has the sense of the total energy operator of the system in question. Taking into account
the estimate (24), one can ascertain that with the probability close to the unity the equation (33) is equivalent
to some linear evolution equation for the probability amplitude [8].

Now we prove that in the nonrelativistic limit this equation should coincide with the Schrödinger equation
for the system of n particles. In fact, according to (11) in the vicinity of the k�th particle the following equation
holds:

�ϕ(k) = (mkc/~)2ϕ(k) + Uk(φ, π),

which after the substitution

ϕ(k) = u(k)e−imkc
2t/~

reduces, in the nonrelativistic limit, to the equation

i~ ∂tu(k) ≈ − ~2

2mk
4ku(k) + U ′k,

where U ′k stands for an e�ective interaction potential. Therefore, the function

ψN = ΨN exp

(
n∑
k=1

imkc
2t/~

)

satis�es the standard n�particle Schrödinger equation.
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Now it is worth-while to discuss the evidence of wave properties of particles in solitonian scheme. To verify
the fact that solitons can really possess wave properties, the gedanken di�raction experiment with individual
electrons�solitons was realized. Solitons with some velocity were thrown into a rectilinear slit, cut in the
impermeable screen, and the transverse momentum was calculated which they gained while passing the slit,
with the width of the latter signi�cantly exceeded the size of the soliton. As a result, the picture of distribution
of the centers of scattered solitons was restored on the registration screen, by considering their initial distribution
to be uniform over the transverse coordinate. It was clari�ed that though the center of each soliton fell into a
de�nite place of the registration screen (depending on the initial soliton pro�le and the point of crossing the
plane of the slit by the soliton's center), the statistical picture in many ways was similar to the well-known
di�raction distribution in optics, i.e. the Fresnel's picture at short distances from the slit and the Fraunhofer's
one at large distances [15, 11].

Various aspects of the ful�llment of the quantum mechanics correspondence principle for the Einstein�de
Broglie's solitonian model were discussed in the works [8, 9, 10]. In these papers it was shown that in the
framework of the solitonian model all quantum postulates were regained in the limit of point-like particles, so
that from the physical �elds one can build the amplitude of probability and the mean value of some physical
quantity can be calculated as a scalar product in the Hilbert space by introducing the corresponding quantum
operators for observables. The fundamental role of the gravitational �eld in the de Broglie�Einstein solitonian
scheme was discussed in [10, 16]. The solitonian model of the hydrogen atom was developed in [12, 13]. The
dynamics of solitons in external �elds was discussed in the paper [17].

As a result we obtain the stochastic realization (19) of the wave function ΨN which can be considered as an
element of the random Hilbert space Hrand with the scalar product

(ψ1, ψ2) = M(ψ∗1ψ2), (34)

with M standing for the expectation value. As a rude simpli�cation one can admit that the averaging in (34) is
taken over random characteristics of particles�solitons, such as their positions, velocities, phases, and so on. It
is important to underline once more that the correspondence with the standard quantum mechanics is retained
only in the point�particle limit (4∨ � ∨0) for N → ∞. To show this [8, 9], one can apply the central limit
theorem stating that for N → ∞ the wave function ΨN (t,x) behaves as the Gaussian random �eld with the
variance

σ2 = ρ(t,x), x ∈ R3n, (35)

where ρ(t,x) stands for the probability density (partition function) of solitons' centers in R3n.
Random Hilbert spaces being widely exploited in mathematical statistics [18], for quantum applications they

were �rst used by N. Wiener in [19]. To illustrate the line of Wiener's argument, we recall the general scheme
of introducing various representations in quantum mechanics.

Let |ψ〉 be a state vector in the Hilbert space H and Â be a self-conjugate operator with the spectrum σ(Â).
Then the a�representation is given by the wave function

ψ(a) = 〈a|ψ〉,

where

Â|a〉 = a|a〉, a ∈ σ(Â).

In particular, the famous Schrödinger coordinate q�representation is given by the wave function

ψ(q) = 〈q|ψ〉 =
∑
n

〈q|n〉〈n|ψ〉, (36)

with |n〉 being some complete set of state vectors in H.
Wiener considered the real Brownian process x(s, α) in the interval [0, 1] 3 s, where α ∈ [0, 1] is the

generalized number of the Brownian trajectory and the correlation reads∫ 1

0

dαx(s, α)x(s′, α) = min (s, s′). (37)
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To obtain the quantum mechanical description, Wiener de�ned the complex Brownian process

z(s|α, β) =
1√
2

[x(s, α) + i y(s, β)] ; α, β ∈ [0, 1], (38)

and using the natural mapping R3 → [0, 1], for the particle in R3, constructed the stochastic representation of
the wave function along similar lines as in (36):

〈α, β|ψ〉 =

∫
s∈[0,1]

dz(s|α, β)ψ(s), (39)

with the obvious unitarity property∫ 1

0

ds |ψ(s)|2 =

∫∫
[0,1]2

dα dβ|〈α, β|ψ〉|2

stemming from (37).

Entangled solitons and EPR correlations

In the sequel we shall consider the special case of two�particles con�gurations (n = 2), corresponding to the
singlet state of two 1/2�spin particles. In quantum mechanics these states are described by the spin wave
function of the form

ψ12 =
1√
2

(|1 ↑〉 ⊗ |2 ↓〉 − |1 ↓〉 ⊗ |2 ↑〉) (40)

and are known as entangled states. The arrows in (40) signify the projections of spin ±1/2 along some �xed
direction. In the case of the electrons in the famous Stern�Gerlach experiment this direction is determined by
that of an external magnetic �eld. If one chooses two di�erent Stern�Gerlach devices, with the directions a
and b of the magnetic �elds, denoted by the unit vectors a and b respectively, one can measure the correlation
of spins of the two electrons by projecting the spin of the �rst electron on a and the second one on b. Quantum
mechanics gives for the spin correlation function the well-known expression

P (a, b) = ψ+
12(σa)⊗ (σb)ψ12, (41)

where σ stands for the vector of Pauli matrices σi, i = 1, 2, 3. Putting (40) into (41), one easily gets

P (a, b) = −(ab). (42)

The formula (42) characterizes the spin correlation in the Einstein�Podolsky�Rosen entangled singlet states
and is known as the EPR�correlation. As was shown by J. Bell [20], the correlation (42) can be used as an
e�cient criterium for distinguishing the models with the local (point-like) hidden variables from those with the
nonlocal ones. Namely, for the local-hidden-variables theories the EPR�correlation (42) is broken.

It would be interesting to check the solitonian model, shortly described in the beforehand points, by applying
to it the EPR�correlation criterium. To this end let us �rst describe the 1/2�spin particles as solitons in the
nonlinear spinor model of Heisenberg�Ivanenko type considered in the works [21, 22]. The soliton in question
is described by the relativistic 4�spinor �eld ϕ of stationary type

ϕ =

[
u
v

]
e−iωt, (43)

satisfying the equation(
iγk∂k − `−1

0 + λ(ϕ̄ϕ)
)
ϕ = 0, (44)

where u and v denote 2�spinors, k runs Minkowsky space indices 0, 1, 2, 3; `0 stands for some characteristic
length (the size of the particle�soliton), λ is self-coupling constant, ϕ̄ ≡ ϕ+γ0, γk are the Dirac matrices. The
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stationary solution to the equation (44) can be obtained by separating variables in spherical coordinates r, ϑ,
α via the substitution

u =
1√
4π
f(r)

[
1
0

]
, v =

i√
4π
g(r)σr

[
1
0

]
, (45)

where σr = (σr)/r. Inserting (45) into (44), one �nds

ω

c
u+ i(σ5)v − `−1

0 u+
λ

4π

(
f2 − g2

)
u = 0,

ω

c
v + i(σ5)u− `−1

0 v +
λ

4π

(
f2 − g2

)
v = 0.

In view of (45) one gets

i(σ5)v = − 1√
4π

(
g′ +

2

r
g

)[
1
0

]
,

i(σ5)u = − i√
4π
f ′σr

[
1
0

]
.

Finally, one derives the following ordinary di�erential equations for the radial functions f(r) and g(r):(
g′ +

2

r
g

)
=
(ω
c
− `−1

0

)
f +

λ

4π

(
f2 − g2

)
f,

−f ′ =
(ω
c

+ `−1
0

)
g +

λ

4π

(
f2 − g2

)
g.

As was shown in the papers [21, 22], these equations admit regular solutions, if the frequency parameter ω
belongs to the interval

0 < ω < c/`0. (46)

The behavior of the functions f(r) and g(r) at r → 0 is as follows:

g(r) = C1r, f = C2, f ′ → 0,

where C1, C2 denote some integration constants. The behavior of solutions far from the center of the soliton,
i.e. at r →∞, is given by the relations:

f =
A

r
e−νr, g = −f

′

B
,

where

ν =
(
`−2
0 − ω2/c2

)1/2
, B = `−1

0 + ω/c.

If one chooses the free parameters `0 and λ of the model to satisfy the normalization condition (similar to
(19)) ∫

d3xϕ+ϕ =

∞∫
0

dr r2
(
f2 + g2

)
= ~, (47)

then the spin of the soliton reads

S =

∫
d3xϕ+Jϕ =

~
2

ez, (48)

where ez denotes the unit vector along the Z�direction, J stands for the angular momentum operator

J = −i[r5] +
1

2
σ ⊗ σ0, (49)
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and σ0 is the unit 2× 2�matrix.
Now it is worth-while to show the positiveness of the energy E of the 1/2�spin soliton. The energy E is

given by the expression

E = c

∫
d3x

[
−iϕ+(α5)ϕ+ `−1

0 ϕ̄ϕ− λ

2
(ϕ̄ϕ)2

]
, (50)

where α = σ ⊗ σ1. The positiveness of the functional (50) emerges from the virial identities characteristic for
the model in question. In fact, the equation for the stationary solution (43) can be derived from the variational
principle based on the Lagrangian of the system

L = −E +

∫
d3xωϕ+ϕ. (51)

Performing the two-parameters scale transformation of the form ϕ(x)→ αϕ(βx), one can derive from (51) and
the variational principle δL = 0 the following two virial identities, which are valid for any regular stationary
solution to the �eld equation (44):∫

d3x
[
i
2

3
ϕ+(α5)ϕ+

ω

c
ϕ+ϕ− `−1

0 ϕ̄ϕ+
λ

2
(ϕ̄ϕ)2

]
= 0, (52)∫

d3x
[
iϕ+(α5)ϕ+

ω

c
ϕ+ϕ− `−1

0 ϕ̄ϕ+ λ(ϕ̄ϕ)2
]

= 0. (53)

Using (52) and (53), one can express some sign-changing integrals through those of de�nite sign:∫
d3x

[
−i1

3
ϕ+(α5)ϕ

]
=
λ

2

∫
d3x (ϕ̄ϕ)2, (54)∫

d3x
[
`−1
0 ϕ̄ϕ+

λ

2
(ϕ̄ϕ)2

]
=
ω

c

∫
d3xϕ+ϕ. (55)

Using the identities (54) and (55), one can represent the energy (50) of the soliton as follows:

E = c

∫
d3x

[
`−1
0 ϕ̄ϕ+ λ(ϕ̄ϕ)2

]
= ω

∫
d3xϕ+ϕ = ~ω, (56)

where the normalization condition (47) was taken into account. Thus, one concludes, in the connection with
(46) and (56), that the energy of the stationary spinor soliton (43) in the nonlinear model (44) turns out to be
positive. Moreover, one can see that (56) is equivalent to the Planck�de Broglie wave�particle dualism relation
(11).

Now let us construct the two�particles singlet con�guration on the base of the soliton solution (43). First
of all, in analogy with (40), one constructs the entangled solitons con�guration endowed with the zero spin:

ϕ12 =
1√
2

[
ϕ↑1 ⊗ ϕ

↓
2 − ϕ

↓
1 ⊗ ϕ

↑
2

]
, (57)

where ϕ↑1 corresponds to (45) with r = r1, and ϕ
↓
2 emerges from the above solution by the substitution

r1 → r2,

[
1
0

]
→
[

0
1

]
that corresponds to the opposite projection of spin on the Z�axis. In virtue of the orthogonality relation for
the states with the opposite spin projections, one easily derives the following normalization condition for the
entangled solitons con�guration (57):∫

d3x1

∫
d3x2 ϕ

+
12ϕ12 = ~2. (58)

Now it is not di�cult to �nd the expression for the stochastic wave function (20) for the singlet two�solitons
state:

ΨN (t, r1, r2) =
(
~2N

)−1/2
N∑
j=1

ϕ
(j)
12 , (59)
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where ϕ
(j)
12 corresponds to the entangled soliton con�guration in the j�th trial.

Our �nal step is the calculation of the spin correlation (41) for the singlet two�soliton state. In the light
of the fact that the operator σ in (41) corresponds to the twice angular momentum operator (49), one should
calculate the following expression:

P ′(a,b) = M

∫
d3x1

∫
d3x2 Ψ+

N2 (J1a)⊗ 2 (J2b) ΨN , (60)

where M stands for the averaging over the random phases of the solitons. Inserting (59) and (49) into (60),
using the independence of trials j 6= j′ and taking into account the relations:

J+ϕ
↑ = 0, J3ϕ

↑ =
1

2
ϕ↑, J−ϕ

↑ = ϕ↓,

J−ϕ
↓ = 0, J3ϕ

↓ = −1

2
ϕ↓, J+ϕ

↓ = ϕ↑,

where J± = J1 ± iJ2, one easily �nds that

P ′(a,b) = −~−2 (ab)

 ∞∫
0

dr r2
(
f2 + g2

)2

= − (ab) . (61)

Comparing the correlations (61) and (42), one remarks their coincidence, that is the solitonian model satis�es
the EPR�correlation criterium.

Conclusion

The main purpose of this paper was to �nd new arguments in favour of the thought that the soliton concept
advocated by Einstein and de Broglie can give a consistent description of extended quantum particles. In
particular, as a motivation for such a conclusion, within a framework of nonlinear spinor �eld model the solitonian
image of 1/2�spin particles was used for constructing two�solitons singlet con�guration, which permitted to
calculate the spin EPR correlation. Fascinating result of this calculation was the coincidence of the quantum
spin correlation with that in the solitonian scheme. This latter fact supports the hope that the solitonian scheme
has many attractive features is relevant to consistent theory of extended elementary particles.
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Dynamics-generating semigroups and phenomenology of
decoherence

Michael B. Mensky
P.N.Lebedev Physical Institute,
53 Leninsky prosp., 119991 Moscow, Russia

Abstract: The earlier proposed Dynamics-Generating Approach
(DGA) is reviewed and extended. Starting from an arbitrary chosen group or semigroup having
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1 Introduction

It is well-known that dynamics of a physical system is restricted if this system possesses some symmetry [1�3].
The formalism which is appropriate for describing symmetries, is group theory, and behavior of symmetric
quantum systems is presented with the help of group representations.

It is less known that dynamics of elementary quantum objects (such as elementary particles but also some
types of non-local objects) are not only restricted by symmetry of these objects but can be derived from the
group-theoretical considerations. Dynamics may be derived from the given group or semigroup [4�6] in the
approach that can be called dynamics-generating approach, or DGA.

The resulting dynamics depends on the choice of the group or semigroup that is a starting point of the pro-
cedure of DGA. The simplest choice is Galilei group, but in the general case the dynamics-generating semigroup
(DGS) should have structure similar to the structure of Galilei group, in particularly has to include transfor-
mation similar to proper Galilei transformations or their generalizations. One may say that DGS should be a
Galiei-type group or semigroup.

Taking Galilei group as DGS leads to theory of non-relativistic quantum particles [4]. Theory of relativistic
particles follows [6] from the so-called Aghassi-Roman-Santilly group [7�9] which is a relativistic generalization
of Galilei group, with the so-called proper time instead of the usual time.

Path integrals as the mathematical apparatus presenting quantum dynamics follows, in the framework
of DGA, from the non-relativistic or relativistic Galilei-type semigroup, which includes the semigroup of
parametrized paths (trajectories) instead of the usual translation group [5, 6]. This may result in theory of
point particles, as in Feynman path integral theory. However, instead of this, one may obtain in this way a
more general type of dynamics, corresponding non-local objects of special type. We call these objects history-
strings, and they may be used as a sort of fundamental model for presenting con�nement of quarks [13].

In the present paper we shall expand DGA in such a way that it might describe open quantum systems, so
that the resulting dynamics might include decoherence and dissipation.

It seems unexpected that DGA may lead to phenomenological description of the dynamics of open quantum
systems i.e. those which are subject to in�uence of their environment. However, this proves to be possible.
Logics of the construction is based in this case on the fact that 1) decoherence and dissipation may be presented
phenomenologically with the help of restricted path integrals (RPI), or quantum corridors, and 2) the dynamics
presented by RPI may also be derived in the framework of DGA.
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Dissipation presented by RPI
Decoherence and dissipation of a quantum system is a consequence of interaction of this system with its en-
vironment [11�14]. However, decoherence may in various ways be presented phenomenologically (see [15] and
references therein). One of the phenomenological approaches is based on the idea that interaction with the
environment remains in the latter some information on the state of the system and may therefore be considered
as a continuous measurement of the system. One can make use of restricted path integrals (RPI), or quantum
corridors, for describing such a measurement [5, 16].

According to RPI approach, integration in Feynman path integral is restricted onto a set of paths (quantum
corridor) which presents the readout of the continuous measurement (information remaining in the environment
about the state of the system in all time moments). RPI presents therefore dynamics of an open system under
action of its environment. However, no explicit model of the environment is used in the RPI approach.

Approach based on RPI is advantageous in case when a quantum system is given, and the task is in analyzing
how the dynamics of this system change under action of various environments. It is much more cumbersome to
apply in these situations conventional approach, with considering the system together with its environment and
subsequent integrating out the degrees of freedom of the environment. The phenomenological RPI approach
essentially simpli�es calculations and allows to systematically explore large classes of environments for the given
system.

The simplest model of decoherence and dissipation of a point quantum particle that can be obtained in the
framework of RPI approach [15], leads to the phase representation of the path integral (the integral over paths
in the phase space) in which the conventional measure of integration (exponential of the action) is substituted
by the following functional:

U tt′([p], [x]) = exp

{∫ t

t′
dt

[
i

~

(
p ẋ−H0(p,x)

)
−κ
(
A(p,x)− a(t)

)2

− i

~

(
λ a(t)B(p,x) + C(p,x)

)]}

The �rst term here (with H0 = p2/2m) presents dynamics of the initial quantum system (point particle of mass
m), the second term is responsible for decoherence arising due to continuous measuring the observable Â (with
the precision depending on the coe�cient κ), resulting in the value a(t) of this observable at time t, and the last
term presents dissipation. More complicated regimes of decoherence may be described analogously, di�ering
only by the choice of the corresponding functions in the exponent.

Semigroup of quantum corridors In the example presented above, the quantum corridor is determined
by the function [a]tt′ , i.e. by the valued a(t) of the measured observable at each moment of the interval of the

measurement. Operation of multiplication is naturally de�ned for these quantum corridors as [a]tt′′ = [a]tt′ · [a]t
′

t′′

is taken. Two corridors that have to be multiplied are joined together in such a way that the second corridor
starts at the point where the �rst one ends. With this de�nition, corridors form a semi-groupoid (since the
inverse element is not de�ned for an arbitrary corridor and not any pair of the corridors may be multiplied).

However, the semi-groupoid can be converted into a semigroup (in which any pair of elements may be
multiplied) if not individual corridors but classes of corridors are considered as elements, each class containing
the corridors di�ering by the general shift of all its points. In the book [16] a group was additionally de�ned
which transforms di�erent corridors (i.e. di�erent results of the continuous measurement) at the given time
interval into one another. Finally, a semigroup of corridors may be de�ned that has a structure resembling the
structure of Galilei group. Such Galilei-type semigroup can be used for deriving, in the framework of DGA, the
dynamics of decohering or dissipating systems.

Here we shall obtain the dynamics of this type without postulating path integral but deriving it from the
group-theoretical considerations formulated as dynamics-generating approach (DGA). The origin of the DGA
process will be the choice of some Galilei-type semigroup (a group in simple case). All elements of dynamics,
including the measure of path integrating (exponential of the classical action), will be determined from the
chosen Galilei-type dynamics-generating semigroup (DGS).
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2 Dynamics-generating approach (DGA)

In this section we shall brie�y mention the main points of the dynamics-generating approach (DGA) leading from
the arbitrarily chosen group or semigroup of Galilei type, G, to dynamics of elementary quantum objects (for
simplicity, call them particles, although some of them may be non-local). The approach includes constructing
two characteristic representations of G as well as intertwining these representations.

The elementary representation Uelem(G) describes the particle as a whole (as an elementary object) while
the local representation Uloc(G) describes the same particle in terms of its localization in the appropriate
space (for example space-time, but may be another space relating with the space-time in a more complicated
way). Intertwining these representations (mapping between carrier spaces of them, S1 : Lelem → Lloc and
S2 : Lloc → Lelem) allows one to connect the two descriptions (elementary and local) with each other and
derive the causal propagator, i.e. the probability amplitude for the particle to transit from one localized state
to the other.

An important (although purely technical) role in this construction is played by induced representations of
groups/semigroups that supply universal mathematical instruments for all stages of DGA. Remark that the
group/semigroup should have a structure similar to the structure of Galilei group, but di�erent Galilei-type
groups/semigroups lead to di�erent kinds of elementary objects and di�erent kinds of dynamics, including even
decoherence and dissipation.

2.1 Representations of
dynamics-generating groups/semigroups

The local representation Uloc(G) has to be realized in the space Lloc of functions on the con�guration space of
the particle. The latter may be the space-time for point particles, but can also have more complicated structure
for non-local objects (or even for point particles but under external in�uence). In any case the con�guration
space may be realized as a quotient space G/H where H ⊂ G is a subgroup/subsemigroup, and the local
representation may be constructed as a representation Uloc(G) = χ(H) ↑ G of the group or semigroup G
induced from the subgroup/subsemigroup H (see below Sect. ?? 2.2sec:InducedRepresentations about induced
representations).

The elementary representation Uelem(G) should be irreducible (for presenting elementary object) and may be
realized in any way. However, it is convenient to realize it also as an induced representation Uelem(G) = κ(K) ↑ G
from an appropriate representation κ of an appropriate subgroup/subsemigroup K ⊂ G.

If the representations Uloc(G) and Uelem(G) are realized as induced representations, then the operators
which intertwine these representations, are obtained in the standard form as it is shown in Sect. . The operators
S1 and S2 are said to intertwine the representations Uelem(G) and Uloc(G) in one and opposite directions
(S1 ∈ [Uelem, Uloc]) and S2 ∈ [Uloc, Uelem]) if the following commutation relations are valid:

S1Uelem(g) = Uloc(g)S1, S2Uloc(g) = Uelem(g)S2.

These operators map the two representations onto each other, conserving the action of the group/semigroup.
The product operator Π = S1S2 intertwines the local representation Uloc(G) with itself. The kernel Π(x′′, x′)
of the operator Π is then a two-point function with the arguments in the localization space (space-time in the
simplest case). This function is interpreted as a probability amplitude for transition from the point x′ in the
localization space to another point x′′ of this space. Causal propagator is obtained then by imposing additional
condition that the propagation occurs from the past to the future.

This physical interpretation of the operator Π = S1S2 is elaborated in the book [4] for point non-relativistic
and relativistic particles (when localization space is the space-time) and applied in [5, 6] for deriving non-
relativistic and relativistic path integrals (when the localization space is a space of trajectories).

Di�erent choices of the dynamics-generating groups/semigroups lead to di�erent dynamics:

� Galilei group: Non-relativistic particles

� Aghassi-Roman-Santilli group: Relativistic particles

� Galilei-type semigroup (with paths instead of tranlation vectors): Feynman path integrals

Di�erent choices of con�guration spaces describe di�erent physical in�uences of environment on the particles:
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� Space-time: Gauge �elds (including con�nement of color)

� Phase space: Decoherence and dissipation

Some of these constructions will be brie�y considered in the next sections.

2.2 Induced representations

We shall use so-called induced representations of groups/semigroups as a convenient mathematical instrument.
Induced representations generalize the well-known regular representation (acting by left shifts in the space of
number-valued functions on the group). The representation κ(K) ↑ G of the group or semigroup G induced
from the representation κ(K) of the subgroup (subsemigroup) K ⊂ G is also de�ned by left shifts of functions
on G, but the space of these functions (a carrier space of κ(K) ↑ G) is de�ned in a more complicated way.

The carrier space of the representation Uκ(G) = κ(K) ↑ G is de�ned as a space of functions on G with
values in the carrier space Lκ of the representation κ(K) and satisfying the so-called structure condition

ϕ(gk) = κ(k−1)ϕ(g) (1)

(for any g ∈ G, k ∈ K. The operators of the induced representation Uκ act in this space by left shifts:

Uκ(g)ϕ(g′) = ϕ(g−1g′) (2)

Operators U(g) are unitary in respect to the scalar product

(ϕ,ϕ′) =

∫
G/K

〈ϕ(xG), ϕ′(xG)〉dx (3)

Intertwining S ∈ [κ(K) ↑ G,χ(H) ↑ G]:
Operator which intertwines two induced representations of a
group/semigroup G have form

(Sϕ) (g) =

∫
G

s(g′)ϕ(gg′)dg′ (4)

were operator-valued function s(g) : Lκ → Lχ satis�es the following two-sided structure condition:

s(hgk) = χ(h)s(g)κ(k), ∀ k ∈ K, h ∈ H

Because of this condition, the integrand is in fact constant on the cosets gK. Therefore, integration may be
performed over the quotient space G/K rather than over the whole group/semigroup:

Sϕ(g) =

∫
G/K

s(xG)ϕ(gxG)dx (5)

3 Galilei group and non-relativistic particles

The simplest case of applying DGA is the derivation of dynamics of non-relativistic particles from the Galilei
group [4]. We shall brie�y expose here the scheme of this construction. The more complicated applications in
the following sections will follow the same general scheme.

3.1 Galilei group

Elements of Galilei group may be presented as products (g = aT rvL) of translations, rotations and proper
Galilei transformations. Each of these are de�ned by their action on the space-time points x = {x0,x} as follows
(notations are evident):

aTx = x+ a = {x0 + a0,x + a},
rx = {x0, rx}, vGx = {x0,x + x0v}
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Multiplications in Galilei group are completely determined by the following relations:

aTa
′
T = (a+ a′)T , vGv′G = (v + v′)G,

rvGr
−1 = (rv)G, vGaTv−1

G = (vGa)T = {a0,a + a0v}T

3.2 Projective representations as an origin of dynamics

Projective representations of the Galilei group are de�ned as

U(g)U(g′) = λ(g, g′)U(gg′)

where λ(g, g′) are complex numbers called multiplicators of the given representation. The system of multiplica-
tors for a projective representation of Galilei group is determined as

λ
(
aT rvG, a

′
T r
′v′G

)
= λ

(
vG, a

′
T

)
= exp

[
im

(
va′ +

1

2
v2a′0

)]
.

It depends on a single parameter m (which will play the role of mass in the dynamics resulting from DGA).

Propagator following from Galilei group due to DGA (i.e. as Π = S1S2 with the operators Si intertwining
elementary and local representations) is equal (up to a number factor) [4] to

(Πψ) (x) =

∫
d4x′Π(x− x′)ψ(x′),

Π(x− x′) =

∫
dv exp

{
i

[
mv(x− x′)− 1

2
mv2(x0 − x′0)

]}
.

Causal propagator is obtained then if one requires that the transition is performed from the past to the
future:

Πc(x− x′) = θ(x0 − x′0)Π(x− x′).

4 Paths and Galilei semigroup

Galilei semigroup is obtained if translation subgroup of Galilei group is replaced by the semigroup of
parametrized paths, or trajectories [7, 13, 16, 18]. Dynamics resulting in the framework of DGA [5] is what
is known as Feynman path integrals. It will be considered in Sect. 5.1.

4.1 Paths instead of translations

The semigroup of trajectories (parametrized paths) is de�ned as a generalization of the translation group. This
may be done as follows (see Fig. 1 ).
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� An element of the translation group is de�ned as an element in the corresponding vector space. Product
of two translations is de�ned as a sum of the corresponding vectors.

� Let us consider a generalized translation as a class of continuous curves (in the corresponding linear
space), each class containing the curves obtained from each other by general shifts. Product of two classes
is de�ned by prolongation of the representative of one class by the representative of the other class, taking
the representatives in such a way that the end of one of them coincides with the starting point of the
other.

� Precise de�nitions may be found in [7,13,16,18]. In the result, the set of generalized translations (classes
of continuous curves) form a semigroup, i.e. associative product is de�ned for any pairs of elements but
an inverse elements is not always de�ned.

If the paths are parametrized by the time parameter, we shall denote any curve x(t) belonging to this class
as [x]t

′′

t′ where x(t′) and x(t′′) are its initial and �nal points. The path is de�ned as a class of equivalent curves,
two curves being equivalent if all points of one of them di�er from the points of the other curve by the same
vector. We have thus the semigroup of paths (the term �path� denoting a class of equivalent curves). Because
of the equivalence, the path, i.e. the class of equivalent curves, is de�ned by velocities ẋ(t). We shall denote
such a class as [x]t

′′

t′ = [ẋ]t
′′

t′ or even [x]t
′′

t′ = [u]t′′−t′ where u(t) = ẋ(t− t′).

4.2 Structure of Galilei semigroup

Galilei semigroup is de�ned if the translations of Galilei group are replaced by trajectories (or parametrized
paths) [x]t

′′

t′ = [u]t′′−t′ . Correspondingly, the elementary quantum object that will be described in the framework
of DGA should have the space of trajectories as its localization space.

Generalization of a proper Galilei transformation is determined as family of velocities, one velocity for each
time: [v] = {v(t)| −∞ < t <∞} with products de�ned trivially:

[v][v′] = [v + v′] = {v(t) + v′(t)| −∞ < t <∞}. (6)

Besides the mentioned elements, Galilei semigroup contains rotations r ∈ R, with the evident relations:

r[v]r−1 = [rv], r[u]τr
−1 = [ru]τ , (7)

The Galilei semigroup as a whole contains these elements as well as their products, g = [u]τr[v].
Interrelations of the characteristic elements of Galilei semigroup may be characterized as follows. As has

been said previously, product of paths (trajectories) [x]t
′′

t′ [x]t
′

t is de�ned as prolonging (extending) them by each
other. The action of a proper Galilei transformation [v] converts the paths on the given time interval into each
other, which is expressed by the following commutation relation:

[v][u]τ [v]−1 = [u + v]τ . (8)

The Galilei semigroup (just as Galilei group) has (non-trivial) projective representations, with the systems
of multiplicators of the form(

[u]τr[v], [u′]τr
′[v′]

)
= exp

[
im

∫ τ

0

dσ

(
uv′ +

1

2
v′2
)]

. (9)

Instead of projective representations of Galilei semigroup one can consider only usual vector representation
but for central extension of the semigroup (we shall denote it by the same letter G). Elements of the extended
semigroup are de�ned as g = λ[u]τr[v] where λ is an arbitrary complex number (therefore, an element from
the center of the semigroup G). For elements of the extended semigroup the same relations are valid but with
Eq. (8) replaced by the following:

[v][u]τ [v]−1 = λ · [u + v]τ , λ = exp

[
im

∫ τ

0

dσ

(
uv +

1

2
v2

)]
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5 Propagators in DGA with paths instead of translations

If we start the procedure of DGA from the Galilei semigroup, we obtain �nally [5] the dynamics presented
by Feynman path integrals. The concept of path integrals, including the measure of integrating (the famous
exponential of the classical action) is not postulated in this case but derived from the group-theoretical consid-
erations.

In the context of DGA, Galilei semigroup leads to the space of trajectories as a localization space. In
principle, this allows one to obtain the dynamics of non-local objects.1 If our goal is theory of point particles,
then we make use of the propagator in the space of trajectories (Sect. 5.1) and go over to the propagator in the
space-time (as is shown in Sect. 5.2).

5.1 Causal propagator in the space of trajectories

In Sect. 2.1 the general procedure (DGA) is exposed for constructing causal propagator of the elementary
quantum object with the help of intertwining local and elementary representations of the dynamics-generating
group/semigroup. This procedure consists in i) constructing intertwining operators S1 ∈ [Uelem, Uloc], S2 ∈
[Uloc, Uelem], and Π = S1S2, ii) �nding the kernel Π(x′′, x′) of the latter and iii) imposing the causality condition
for obtaining the causal propagator Πc(x′′, x′).

In case of Galilei semigroup, with paths instead of space-time translations, the role of localization space is
played by trajectories (parametrized paths) [5,6]. The resulting form of the causal propagator, up to a number
factor, is then [5]

(Πcψ)[x]t0 = θ(t− t′)
∫ t

0

dt′
∫
d[p]tt′ · U tt′([p], [x]) · ψ[x]t

′

0 (10)

where it is denoted

U tt′([p], [x]) = exp

[
i

~

∫ t

t′
dt (pẋ−H0(p))

]
(11)

with

H0(p) =
1

2m
p2

This form of the propagator is formally derived from intertwining the local and elementary representations.
We see that the Feynman measure in the space of trajectories is not postulated (as an exponential of the classical
action) but derived from the group-theoretical considerations, namely from the system of multiplicators (9) of
Galilei semigroup.

5.2 Propagator in space-time

In Sect. 5.1 we considered the space of trajectories (parametrized paths) as a localization space of our elementary
quantum object. Therefore, this object may be in principle non-local. Such non-local objects (called `history-
strings') were considered in [6, 13]. However, dynamics of a point particle can also be derived from the path-
integral formalism obtained in Sect. 5.1.

For this aim, we have to de�ne the probability amplitude to be in a de�nite space-time point as a sum of
the amplitudes to arrive to this point along various paths (trajectories).

The action of paths on the space-time may be naturally de�ned as

(x′′, t′′) = [x]t
′′

t′ (x′, t′)

where (x′, t′) and (x′′, t′′) are correspondingly the initial and �nal space-time points of the path [x]t
′′

t′ . Let us

say in this case that the point (x′′, t′′) is arrived from (x′, t′) along the path [x]t
′′

t′ .
Let us suppose2 that 1) at the time moment t = 0 the point particle is localized in a single point (x0, 0) and

2) it can arrive to an arbitrary space-time points (x′, t′) along paths [x]t
′

0 according to the formula

(x′, t′) = [x]t
′

0 (x0, 0).

1Such non-local objects can naturally present con�nement of quarks [13].
2This assumption may be generalized, but this is not essential for us now.
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Let the wave function of the particle in the space of trajectories is ψ[x]t
′′

t′ . This means that the probability

amplitude for the particle to move along the path [x]t
′′

t′ is equal to ψ[x]t
′′

t′ . Then the amplitude for this particle

to arrive to the point (x′, t′) along the path [x]t
′

0 is equal to ψ[x]t
′

0 . Therefore, the amplitude to be at this point
(i.e. to arrive to this point along any path leading to it) is equal to

Ψ(x′, t′) =

∫ x′

x′′
d[x]t

′

0 α[x]t
′

0 ψ[x]t
′

0 , where (x′, t′) = [x]t
′

0 (x0, 0) (12)

with some weight function α[x]t
′

0 . This is nothing else than a formula for transition from the wave function (of
a point particle) given as a function on the space of trajectories, to the wave function on the space-time.

The weight function α[x]t
′

0 is not arbitrary. In order for the formula (12) to be in accord with the multi-
plicative structure of the paths, the following condition should be valid,

α[x]tt′ · α[x]t
′

t′′ = α[x]tt′′ , where [x]tt′ · [x]t
′

t′′ = [x]tt′′ .

In other words, the function α has to be a representation of the semigroup of trajectories. It is easy to show [5]
that the most general form of the weight function with these properties is

α{x}t
′

t′′ = T exp

{
i

∫ t′

t′′
dt [V (x(t), t) + A(x(t), t)ẋ]

}
.

where �T exp� denotes time-ordered exponential, V a potential and A a gauge �eld.

Equation (10) described causal propagation in terms of path-dependent wave function. Going over, for a
point particle, to the point-dependent wave function (12), we have the point-dependent form of the causal
propagator [5]

(ΠcΨ)(x, t) = θ(t− t′)
∫ t

0

dt′
∫
dx̃

∫ x

x̃

d[x]tt′ · α[x]tt′

∫
d[p]tt′

× exp

{∫ t

t′
dt

[
i

~
(pẋ−H0(p)

]}
·Ψ(x̃, t′).

It coincides with the usual path-integral form of non-relativistic causal propagator.

6 Phase space and decoherence in DGA

Dynamics-generating approach (DGA) is aimed at the derivation of dynamics of elementary quantum objects,
for example elementary particles. It seems at �rst glance that dynamics of complicated physical systems hardly
can be derived in the same way. Even more strange to believe that dynamics of open quantum systems can be
obtained in the framework of DGA.

The system is called open if its interaction with the environment a�ects its dynamics. As a result of this
in�uence, the open quantum system exhibits the phenomenon called decoherence. In the course of gradual
decoherence, the quantum system partially loses the quantum character of its evolution, behaves more like a
classical system. Dissipation is an extreme form of decoherence.

It is unexpected that dynamics of open quantum systems, including phenomena of decoherence and dissi-
pation, also can be derived in the framework of DGA. From the mathematical point of view, the price paid for
this, is necessity to consider the (generalized) phase space as a localization space for our �elementary quantum
object� (although this term becomes questionable in this situation).

In fact, this is not so strange because open quantum systems can be described phenomenologically, so that
the environment is not explicitly included in the description (but its a�ect is taken into account implicitly).
Here we shall remind the phenomenological description of decoherence by restricted path integrals (RPI) [5,16]
and then derive the same dynamics in the framework of DGA.
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6.1 Decoherence in RPI approach

Decoherence as an e�ect of the environment can be taken into account directly in models similar to the widely
known Caldeira-Leggett model [19], or with the help of the Feynman-Vernon in�uence functional included in the
path integral [20]. Instead of this, one may use the phenomenological Lindblad equation [21]. We shall prefer
to make use of the RPI approach (see [5,16] on continuous quantum measurements in terms of RPI and [15] on
its application to decoherence and dissipation).

The role of environment may be considered to be a sort of continuous measurement, and dynamics of
continuously measured quantum system may be accounted by restricting its path integral onto the corresponding
quantum corridor, i.e. on the family of paths which corresponds to the result (output) of the measurement.
This gives [15] for the propagator of the open (continuously measured) system the expression

Uα(q′′, q′) =

∫ q′′

q′
d[p]d[q] ·Wα[p, q] · exp

{
i

~

∫ t′

t

dt (pq̇ −H(p, q, t))

}

where α denotes the measurement result and the weight functional Wα[p, q] restricts Feynman path integral on
the subset of paths corresponding to the measurement result α.

In [15] the author considered the special case of a non-relativistic particle moving through the medium.
This may be interpreted as continuous measuring some observable Â of the particle, with the result of the
measurement given by the values a(t) of this observable in various time moments, i.e. by the curve α = [a]t

′′

t′ =
{a(t)|t′ < t < t′′}. This is described by the restricted path integral for the non-relativistic particle, for example
in the form Eq. (10) but with a more complicated kernel U t

′′

t′ :

U t
′′

t′ ([p], [x]) = exp

{∫ t′′

t′
dt

[
i

~

(
p ẋ−H0(p,x)

)
(13)

−κ
(
A(p,x)− a(t)

)2

− i

~

(
λ a(t)B(p,x) + C(p,x)

)]}
The term −κ(A− a)2 here describes the restriction of the path integral that corresponds to the continuous

measurement of A with the precision determined by the coe�cient κ. This term is responsible for decoherence.
The terms including B and C, take into account an additional e�ect of dissipation that can arise in the process
of the measurement.3 For example the terms of this type may take into account deceleration by measurement,
i.e. dissipation of energy.

This phenomenological description of decoherence and dissipation has been obtained in terms of restricted
path integral. This type of dynamics emerges as a secondary e�ect rather than is de�ned on the fundamental
level. It is questionable therefore whether it can be derived in the framework of DGA. We shall see in Sect. that
this is possible if one introduce the (generalized) phase space as a localization space of our �elementary quantum
object�.

6.2 Propagator in phase space

Propagator in the space of paths is de�ned by Eq. (10) with the kernel (11), i.e. in the following form:

(Πcψ)[x]t0 =

∫ t

0

dt′
∫
d[p]tt′ exp

{∫ t

t′
dt

[
i

~

(
p ẋ−H0(p)

)]}
ψ[x]t

′

0

We have seen in Sect. 5.2 how the propagator in the space-time can be obtained from this general path-dependent
formula. Let us now apply the same path-dependent propagator for deriving propagator in the (generalized)
phase space and further for derivation phenomenological description of decoherence and dissipation.

The construction in Sect. 5.2 began by transition from the path-dependent wave function to the space-time-
dependent wave function (12). Now we have to go over from the space of paths to the generalized phase space
rather than to space-time.

3The form of the �decoherence term� −κ(A− a)2 in the exponent of Eq. (13) is de�ned by the very general arguments [22], but
additional terms may have a more complicated form.
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The point of the usual phase space is characterized by the pair �position and momentum�. We shall denote

the point of the generalized phase space as the pair
(

[p]t
′

0 ; (x′, t′)
)
including a space-time point and a path

in the momentum space. The wave function in this space has to be obtained with the help of the procedure

similar to one applied in Sect. 5.2. The value of the wave function in the de�nite point
(

[p]t
′

0 ; (x′, t′)
)
of the

generalized phase space is equal to the integral over all paths leading to this point. This results in the wave
function of the form

Ψ
(

[p]t
′

0 ; (x′, t′)
)

=

∫ x′

x′′
d[x]t

′

0 α([p], [x])t
′

0 ψ[x]t
′

0

where α is some weight function depending on the paths in the phase space.4

The propagator in the generalized phase space is then derived along the arguments similar to those from
Sect. 5.2:

(ΠcΨ)
(
[p]t0; (x, t)

)
=

∫ t

0

dt′
∫
d[p]tt′

∫
d[x]t0

× αt0([p], [x]) · exp

{∫ t

t′
dt

[
i

~

(
p ẋ−H0(p)

)]}
Ψ
(

[p]t
′

0 ; (x′, t′)
)

or

(ΠcΨ)
(
[p]t0; (x, t)

)
=

∫ t

0

dt′
∫
d[p]tt′

∫
d[x]t0 · U tt′([p], [x]) Ψ

(
[p]t

′

0 ; (x′, t′)
)

where it is denoted

U tt′([p], [x]) = αt0([p], [x]) · exp

{∫ t

t′
dt

[
i

~

(
p ẋ−H0(p)

)]}
. (14)

Depending on the choice of the weight function αt0([p], [x]), Eq. (14) presents general form of decoherence
and dissipation of the non-relativistic particle. In particular, the kernel describing decoherence and dissipation
of the form

U tt′([p], [x]) = exp

{∫ t

t′
dt

[
i

~

(
p ẋ−H0(p,x)

)
−κ
(
A(p,x)− a(t)

)2

− i

~

(
λ a(t)B(p,x) + C(p,x)

)]}
(as in Eq. (13)) may be obtained if α is chosen as follows:

α
(
[x]tt′ , [p]tt′

)
=

exp

{
−
∫ t

t′
dt

[
i

~

(
+ λ a(t)B(p,x) + C(p,x)

)
+ κ
(
A(p,x)− a(t)

)2
]}

After integrating in [p]t0, we have �nally the causal propagator in space-time

(ΠcΨ) (x, t) =
∫ t

0
dt′
∫
dx̃
∫ x

x̃
d[x]tt′

∫
d[p]tt′

× exp
{∫ t

t′
dt
[
i
~

(
p ẋ−H0(p,x)− C(p,x)− λ a(t)B(p,x)

)
−κ
(
A(p,x)− a(t)

)2
]}
·Ψ(x̃, t′)

4This weight function implicitly accounts for the in�uence of the environment and therefore determines details of dynamics of
the open system.
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correctly describing decoherence and dissipation,5 i.e. in�uence of the environment. However, we derived the
propagator in the framework of the universal procedure of dynamics-generating approach. The price for inclusion
decoherence and dissipation in the scope of this approach is that we came to the propagation in space-time not
directly, but through the intermediate form of the propagator in the generalized phase space.

7 Concluding remarks

In the preceding we gave a brief review of the Dynamics-Generating Approach (DGA) and demonstrated that
it is applicable for derivating dynamics of open quantum systems.

The goal of DGA is to derive phenomenological description of dynamics of an �elementary quantum object�
(called �particle� although it can be non-local). DGA starts from choosing some group or semigroup G having
structure similar to the structure of Galilei group. Then two special representations of this group/semigroup are
constructed, Uelem(G) presenting the state of the particle as a whole, and Uloc(G) describing localization of this
state. Intertwining these representations allows one to provide agreement of these two description and derive
propagator of the particle in an appropriate localization space (it may be space-time or the space of paths in
the space-time).

It has been earlier shown that, depending on the concrete choice of the dynamics-generating semigroup G,
the dynamics of a non-relativistic or relativistic local or non-local object can be obtained in the framework of
DGA. Feynman path integral is derived in such a way, and the measure of the path integrating (exponential of
the classical action) is also derived from G rather than postulated.

It is additionally shown in the present paper that dynamics of open quantum systems, including phenomena
of decoherence and dissipation, can also be derived in such a way. This is achieved if the localization space of the
�particle� is de�ned as a generalized phase space and propagation in this space is �rst derived as an intermediate
point of the theory. In such a way the phenomenological description of a non-relativistic particles subjected to
decoherence and dissipation is derived. Although this type of dynamics physically emerges as an a�ect of the
environment, in the framework of DGA the environment is not considered explicitly. The decohering particle is
considered in this case as a special sort of an elementary quantum object.
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Schwarzschild's metric solution has no mathematical errors for the empty-space paradigm where elementary
sources are point particles or Dirac delta-functions. In 1939 Einstein �nally rejected Schwarzschild's metric with
singularities for physical reality [1]. Indeed, metric solutions without singularities do exist in Einstein's General
Relativity if the latter accepts the non-empty space paradigm or continuous sources-particles, for example [2,3].
New physics of geometrized radial particles describes main relativistic tests more self-consistently [4] than the
point particle physics.

Overlapping continuous masses with local energy exchanges can justify a dark kind of mechanical mass-
energy called interference or dipole energy. The many-body metric solution for static non-empty space [3]
employs the post-Newton gravitational potential of overlapping radial masses

W (x) ≡ −c2ln 1√
goo(x)

=

−c2ln
(

1 +
r1

|x− a1|
+

r2

|x− a2|
+ ...+

rn
|x− an|

)
. (1)

Here ri ≡ GEi/c
4 = Gmi/c

2 is Schwarzschild-type coordinate scale of the elementary energy-charge Ei, dis-
tributed everywhere but mainly in the vicinity of ai. Once �absurd� Newtonian ether or nowadays material
space with such a local metric stress W (x) complies with the Einstein Principle of Equivalence for mechanical
(inertial or passive, µpc

2) and gravitational (potential or active, µac
2) mass-energy densities,

µp(x) ≡ [∇W (x)]2

4πGc2
=
∇2W (x)

4πG
≡ µa(x). (2)

The logarithmic local potential (1) keeps integrals of active (potential) and passive (inertial) metric space
energies,

∫
d3xµpc

2 =
∫
d3xµac

2 = Emetric, of the united material continuum of n overlapping energy-charges:

Emetric ≡
c4

4πG

∫
d3x

 (x−a1)r1
|x−a1|3 + (x−a2)r2

|x−a2|3 + ...+ (x−an)rn
|x−an|3

1 + r1
|x−a1| + r2

|x−a2| + ...+ rn
|x−an|

2

(3)

= (m1 +m2 + ...+mn)c2 = const.

Such a universal mass-energy conservation, Emetric ≡ Emonopoles + Edipoles = const, for a system of interact-
ing continuous particles can take place due to hidden energy contributions into paired (dipole, interference)
formations of material densities, with Emetric ≡ Emonopoles + Edipoles = const.

Despite negative potential energy shifts take place for observable radial elements, metric mass of the many-
body system in (3) stays steady,

∑
mi = const, due to compensating deposits from dipole positive energies. This

keeps scalar masses of many-particle bodies in spite of mutual internal interactions of material elements. When
centers of radial particles are separated into �nite distances, then n-body metric energy c2

∑
mi contains both
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directly observable (radial) and non-observable (dipole, dark) fractions of gravitational/inertial mass-energy. It
should be used |ak − ai| ≡ Rik >> ri + rk = G(mi +mk)/c2 for distances between centers of radial particles in
(3) at the most of weak-�eld applications,

Emonopoles ≈
c4

4πG

∫
d3x

r2
1

|x|4(1 + r1
|x| + r2

|a1−a2| + ...+ rn
|a1−an| )

2
(4)

+
c4

4πG

∫
d3x

r2
2

|x|4(1 + r1
|a2−a1| + r2

|x| + ...+ rn
|a2−an| )

2

+...+
c4

4πG

∫
d3x

r2
n

|x|4(1 + r1
|an−a1| + r2

|an−a2| + ...+ rn
|x| )

2
=

c2
n∑
i=1

mi

√
g 6=ioo (ai) ≈

n∑
i=1

mi

c2 − n∑
k 6=i

Gmk

Rik

 > 0

Here items for static monopole mass-energies, like

E2 ≡ c2m2

√
g 6=2
oo (a2) ≡ c2m2/

(
1 + r1

|a2−a1| + r3
|a2−a3| + ...+ rn

|a2−an|

)
, for example, contain negative shifts, as-

sociated with paired Newtonian interactions within the united material space. Negative Newtonian potentials
for energy of monopoles (4) do not mean decrease of the system metric energy (3), because paired gravitational
interactions are always accompanied by interference, dark deposits in a form of dipole energy formations,

Edipoles =
c4

4πG

n∑
i=1

n∑
k 6=i

∫ 2π

0

dϕ

∫ ∞
0

r2dr

∫ π

0

rirk
(
r2 −Rikrcosθ

)
sinθdθ

r3(R2
ik + r2 − 2Rikrcosθ)3/2

≈
n∑
i=1

n∑
k 6=i

Gmimk

Rik
> 0. (5)

Gravitational attractions of positive energy bodies are always accompanied in (3)-(4) by positive energy
of interference (dipole) �elds. In fact, gravitation is not a formal decrease of negative potential energy of
Newtonian �eld (which without host radial particles does not exist in (4) as a self-maintained �eld), but the
universal tendency of a free mechanical system toward distribution of its total energy between all physical
degrees of freedom. Equipartition distributions of mechanical energy between observable monopoles and dark
dipoles may be expected, in principle, for an equilibrium gravitational system.

Material space continuum in Einstein's GR metric formalism always keeps Euclidean 3D section of curved
4D space-time due to inherent symmetries [2] of the real world geometry. GR geodesic equations of motions in
pseudo-Riemann space-time with 0 ≤ goo ≤ 1 and �at 3D intervals, goigojg

−1
oo − gij = δij , have been derived [4]

for strong static �elds,

goodt/dp = 1, dp/ds = goodt/ds = Em/m = const

r2dϕ/dp = Jϕ = const, r2dϕ/ds = JϕEm/m ≡ L = const

(dr/dp)2 + (Jϕ/r)
2 − g−1

oo = const (= −m2/E2
m)

(dr/ds)2 + (rdϕ/ds)2 − E2
m/m

2goo = −1,

(6)

where m = const is the probe scalar mass, while energy Em = const and angular momentum Jϕ = const are the
�rst integrals of relativistic motion. For the pure radial fall from in�nity, when Em/m ≡ c2

√
goo/
√

1− v2c−2 =

const⇒ 1 and dϕ/ds = 0, ds =
√
goocdt

√
1− v2c−2, v2 = (dr/

√
goodt)

2, the last equation in (6) results in

dr/dt = ±c
√
goo(1− goo) (7)
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for the free radial motion with respect to the world (coordinate) time t of a distant observer. Static metric �eld
(4) with one gravitating center, goo = 1/[1 + (ro/r)]

2, leads in (7) to (unstable) motionless states, dr/dt = 0, of
small probe masses at �nal stages of their radial falls. A probe mass reaches maximum radial speed dr/dt = c/2
of the central �eld fall at r = ro(1 +

√
2). Below this transition distance the decelerating part of the fall takes

place due to gravitational repulsion of strong �elds.
Coordinate acceleration d2r/dt2 can be derived from (7) by taking its time derivative,

d2r/dt2 = −c2ror(r2 − 2ror − r2
o)/(r + ro)

5. (8)

This relation universally describes the Newton attraction −roc2r/r3 for ro � r and the strong-�eld GR repulsion
+rc2/r2

o for r � ro ≡ GM/c2. According to the metric stress presentation (4), both repulsion and attraction
of free probe masses correspond to their motion in always negative gravitational potentials.

Today the radial dimension of the Metagalaxy is less than its gravitational scale Ro = GMMeta/c
2.

Therefore, such a dense Metagalaxy should repeal its material elements behind Ro(1 +
√

2). The strong-
�eld limit of (7), when r � ro and dr/dt = cr/Ro ⇒ rHo, corresponds to the Hubble expansion speed at
Ro ⇒ c/Ho = 1, 3× 1026m or at MMeta = Roc

2/G = 1.8× 1053kg. The Universe expansion acceleration in this
limit, d2r/dt2 = c2r/R2

o ⇒ rH2
o , is proportional to the distance r like the Hubble expansion rate.

The Big Bang fragmentation of a radial monopole into the system of expanding (with acceleration) radial
monopoles and dark dipoles corresponds to (7)-(8) and to the aforementioned tendency to equipartition dis-
tribution of energy between monopole and dipole degrees of freedom. In this way, all Metagalaxy's matter in
whole is provisionally in the phase of strong-�eld expansion with acceleration. One day a mature Universe with
constant metric mass-energy (5) of its continuous material space will enter into the contraction phase toward its
con�guration equilibrium next to the equipartition distribution of dark and observable energy contents within
the united material space. The global Universe pendulum around equilibrium material densities of its nonempty
space corresponds to the Penrose's basic construction for conformal cycling cosmology [5].

In general, dynamics of the pulsating metric space should count kinetic energy items for the equipartition
distribution of energy between mechanical degrees of freedom of monopoles and dipoles. Such a dynamical
systems with gravitational repulsion and attraction next to the equilibrium radius ro(1 +

√
2) can be applied, in

particular, to a super massive center of a galaxy. In this way, the strong �eld gravitational repulsion is enabling
proper readings of Sagittarius A* images at the center of the Milky Way Galaxy without event horizon options
required by the black hole approach.
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Introduction

We will follow the approach [1]� [4] in which spinors are constructed in terms of nilpotents formed from the
spacetime basis vectors represented as generators of the Cli�ord algebra

γa · γb ≡ 1
2 (γaγb + γbγa) = ηab

γa ∧ γb ≡ 1
2 (γaγb − γbγa).

(1)

The inner, symmetric, product of basis vectors gives the metric. The outer, antisymmetric, product of basis
vectors gives a basis bivector.

The generic Cli�ord number is

Φ = ϕAγA. (2)

where γA ≡ γa1a2...ar ≡ γa1 ∧ γa2 ∧ ... ∧ γar , r = 0, 1, 2, 3, 4.
Spinors are particular Cli�ord numbers, Ψ = ψαξα, where ξα are spinor basis elements, composed from γA.

We will consider transformation properties of Cli�ord numbers.
In general, a Cli�ord number transforms according to

Φ→ Φ′ = R Φ S. (3)

Here R and S are Cli�ord numbers, e.g., R = e
1
2α

AγA , S = e
1
2β

AγA .
In particular, if S = 1, we have

Φ→ Φ′ = R Φ. (4)

As an example, let us consider the case

R = e
1
2αγ1γ2 = cos

α

2
+ γ1γ2 sin

α

2
, S = e

1
2βγ1γ2 = cos

β

2
+ γ1γ2 sin

β

2
(5)

and examine [5], how various Cli�ord numbers,

X = XCγC , (6)

transform under (3), which now reads:

X → X ′ = RX S. (7)
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(i) If X = X1γ1 +X2γ2 then

X ′ = X1

(
γ1 cos

α− β
2

+ γ2 sin
α− β

2

)
+X2

(
−γ1 sin

α− β
2

+ γ2 cos
α− β

2

)
. (8)

(ii) If X = X3γ3 +X123 γ123 then

X ′ = X3

(
γ3 cos

α+ β

2
+ γ123 sin

α+ β

2

)
+X123

(
−γ3 sin

α+ β

2
+ γ123 cos

α+ β

2

)
. (9)

(iii) If X = s 1 +X12 γ12, then

X ′ = s

(
1 cos

α+ β

2
+ γ12 sin

α+ β

2

)
+X12

(
−1 sin

α+ β

2
+ γ12 cos

α+ β

2

)
. (10)

(iv) If X = X̃1 γ5γ1 + X̃2 γ5γ2, then

X ′ = X̃1

(
γ5γ1 cos

α− β
2

+ γ5γ2 sin
α− β

2

)
+X̃2

(
−γ5γ1 sin

α− β
2

+ γ5γ2 cos
α− β

2

)
. (11)

Usual rotations of vectors or pseudovectors are reproduced, if the angle β for the right transformation is
equal to minus angle for the left transformation, i.e., if β = −α. Then all other transformations which mix
the grade vanish. But in general, if β 6= α, the transformation (7) mixes the grade.

Cli�ord algebra and spinors in Minkowski space

Let us introduce a new basis, called the Witt basis,

θ1 = 1
2 (γ0 + γ3) , θ2 = 1

2 (γ1 + iγ2) ,
θ̄1 = 1

2 (γ0 − γ3) , θ̄2 = 1
2 (γ1 − iγ2),

(12)

where

γa = (γ0, γ1, γ2, γ3). (13)

The new basis vectors satisfy

{θa, θ̄b} = ηab, {θa, θb} = 0, {θ̄a, θ̄b} = 0, (14)

which are fermionic anticommutation relations. We now observe that the product

f = θ̄1θ̄2 (15)

satis�es

θ̄a f = 0 , a = 1, 2. (16)

Here f can be interpreted as a `vacuum', and θ̄a can be interpreted as operators that annihilate f .
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An object constructed as a superposition

Ψ = (ψ0 + ψ1θ1 + ψ2θ2 + ψ12θ1θ2)f (17)

is a 4-component spinor. It is convenient to change the notation:

Ψ = (ψ1 + ψ2θ1θ2 + ψ3θ1 + ψ4θ2)f = ψαξα , α = 1, 2, 3, 4 (18)

where ξα is the spinor basis.
The even part of the above expression is a left handed spinor

ΨL = (ψ1 + ψ2θ1θ2) θ̄1θ̄2, (19)

whereas the odd part is a right handed spinor

ΨR = (ψ3θ1 + ψ4θ2)θ̄1θ̄2. (20)

We can verify that the following relations are satis�ed:

iγ5ΨL = −ΨL, iγ5ΨR = ΨR (21)

Under the transformations

Ψ→ Ψ′ = RΨ , (22)

where

R = exp[
1

2
γa1γa2ϕ], (23)

the Cli�ord number Ψ transforms as a spinor.
As an example let us consider the case

R = e
1
2γ1γ2ϕ = cos

ϕ

2
+ γ1γ2 sin

ϕ

2
. (24)

Then we have

Ψ→ Ψ′ = RΨ =
(

e
iφ
2 ψ1 + e−

iφ
2 ψ2θ1θ2 + e

iφ
2 ψ3θ1 + e−

iφ
2 ψ4θ2

)
f. (25)

This is the well-known transformation of a 4-component spinor.

Four independent spinors

There exist four di�erent possible vacua [3, 4, 6]:

f1 = θ̄1θ̄2 , f2 = θ1θ2 , f3 = θ1θ̄2 , f3 = θ̄1θ2 (26)

to which there correspond four di�erent kinds of spinors:

Ψ1 = (ψ11 + ψ21θ1θ2 + ψ31θ1 + ψ41θ2)f1

Ψ2 = (ψ12 + ψ22θ̄1θ̄2 + ψ32θ̄1 + ψ42θ̄2)f2

Ψ3 = (ψ13θ̄1 + ψ23θ2 + ψ33 + ψ43θ̄1θ2)f3

Ψ4 = (ψ14θ1 + ψ24θ̄2 + ψ34 + ψ44θ1θ̄2)f4.

(27)

Each of those spinors lives in a di�erent minimal left ideal of Cl(1, 3), or in general, of its complexi�ed version
if we assume complex ψαi.

An arbitrary element of Cl(1, 3) is the sum:

Φ = Ψ1 + Ψ2 + Ψ3 + Ψ4 = ψαiξαi ≡ ψÃξÃ, (28)
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where

ξÃ ≡ ξαi = {f1, θ1θ2f1, ..., θ1f4, θ̄2f4, f4, θ̄1θ2f4}, (29)

is a spinor basis of Cl(1, 3). Here Φ is a generalized spinor.
In matrix notation we have

ψαi =


ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 ψ33 ψ34

ψ41 ψ42 ψ43 ψ44

 ,

ξÃ ≡ ξαi =


f1 f2 θ̄1f3 θ1f4

θ1θ2f1 θ̄1θ̄2f2 θ2f3 θ̄2f4

θ1f1 θ̄1f2 f3 f4

θ2f1 θ̄2f2 θ̄1θ2f3 θ1θ̄2f4

 . (30)

Here, for instance, the second column in the left matrix contains the components of the spinor of the second
left ideal. Similarly, the second column in the right matrix contains the basis elements of the second left ideal.

A general transformation is

Φ = ψÃξÃ → Φ′ = R Φ S = ψÃξ′
Ã

= ψALÃ
B̃ξB = ψ′B̃ξB̃ (31)

where

ξ′
Ã

= RξÃS = LÃ
B̃ξB̃ , ψ′B̃ = ψÃLÃ

B̃ . (32)

This is an active transformation, because it changes an object Φ into another object Φ′.
The transformation from the left,

Φ′ = R Φ, (33)

reshu�es the components within each left ideal, whereas the transformation from the right,

Φ′ = Φ S, (34)

reshu�es the left ideals.

Behavior of spinors under Lorentz transformations

Let us consider the following transformation of the basis vectors

γa → γ′a = R γaR−1 , a = 0, 1, 2, 3, (35)

where R is a proper or improper Lorentz transformation. A generalized spinor, Φ ∈ Cl(1, 3), composed of γa,
then transforms according to

Φ = ψÃξÃ → Φ′ = ψÃξ′
Ã

= ψAR ξBR−1 = R Φ R−1. (36)

The transformation (35) of the basis vectors has for a consequence that the object Φ does not transform only
from the right, but also from the left. This had led Piazzese to the conclusion that spinors cannot be interpreted
as the minimal ideals of Cli�ord algebras [7].

But if the reference frame transforms as

γa → γ′a = R γa, (37)

then

Φ = ψÃξÃ → Φ′ = ψÃξ′
Ã

= ψÃR ξB̃ = R Φ. (38)
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This is a transformation of a spinor. Therefore, the description of spinors in terms of ideals is consistent.
As we have seen in Sec.1, the transformation (37) is also a possible transformation within a Cli�ord algebra.

It is a transformation that changes the grade of a basis element. Usually, we do not consider such transformations
of basis vectors. Usually reference frames are �rotated� (Lorentz rotated) according to

γa → γ′a = R γaR−1 = La
bγb, (39)

where La
b is a proper or improper Lorentz transformation. Therefore, a �rotated� observer sees (generalized)

spinors transformed according to

Φ→ Φ′ = R Φ R−1. (40)

With respect to a new reference frame, the object Φ = ψÃξÃ is expanded according to

Φ = ψ′Ãξ′
Ã
, (41)

where

ψ′Ã = ψB̃(L−1)B̃
Ã
. (42)

Recall that α, β = 1, 2, 3, 4, and i, j = 1, 2, 3, 4. The corresponding matrix ψαi transforms from the left and
from the right.

If the observer, together with the reference frame, starts to rotate, then after having exhibited the ϕ = 2π
turn, he observes the same spinor Ψ, as he did at ϕ = 0. The sign of the spinor did not change, because this
was just a passive transformation, so that the same (unchanged) objects was observed from the transformed
(rotated) references frames at di�erent angles ϕ. In the new reference frame the object was observed to be
transformed according to Ψ′ = RΨR−1. There must also exist the corresponding active transformation such
that in a �xed reference frame the spinor transforms as Ψ′ = RΨR−1.

Examples

Rotation

Let us consider the following rotation:

γ0 → γ0 , γ1 → γ1 , γ2 → γ2 cos ϑ + γ3 sin ϑ
γ3 → −γ2 sinϑ+ γ3 cosϑ.

(43)

In the case ϑ = π, we have

γ0 → γ0 , γ1 → γ1 , γ2 → −γ2 , γ3 → −γ3. (44)

The Witt basis then transforms as

θ1 → θ̄1 , θ2 → θ̄2 , θ̄1 → θ1 , θ̄2 → θ2. (45)

A consequence is that, e.g., a spinor of the �rst left ideal transforms as

(ψ11 + ψ21θ1θ2 + ψ31θ1 + ψ41θ2) θ̄1θ̄2 → (ψ11 + ψ21θ̄1θ̄2 + ψ31θ̄1 + ψ41θ̄2) θ1θ2. (46)

By inspecting the latter relation and taking into account Eqs.(27), (19),(20), we see that a left handed spinor
of the �rst ideal transforms into a left handed spinor of the second ideal. Similarly, a right handed spinor of the
�rst ideal transforms into a right handed spinor of the second ideal.

In general, under the ϑ = π rotation in the (γ2, γ3) plane, a generalized spinor

Φ = (ψ11 + ψ21θ1θ2 + ψ31θ1 + ψ41θ2)θ̄1θ̄2

+(ψ12 + ψ22θ̄1θ̄2 + ψ32θ̄1 + ψ42θ̄2)θ1θ2

+(ψ13θ̄1 + ψ23θ2 + ψ33 + ψ43θ̄1θ2)θ1θ̄2

+(ψ14θ1 + ψ24θ̄2 + ψ34 + ψ44θ1θ̄2)θ̄1θ2

(47)
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transforms into

Φ′ = (ψ11 + ψ21θ̄1θ̄2 + ψ31θ̄1 + ψ41θ̄2)θ1θ2

+(ψ12 + ψ22θ1θ2 + ψ32θ1 + ψ42θ2)θ̄1θ̄2

+(ψ13θ1 + ψ23θ̄2 + ψ33 + ψ43θ1θ̄2)θ̄1θ2

+(ψ14θ̄1 + ψ24θ2 + ψ34 + ψ44θ̄1θ2)θ1θ̄2

. (48)

The matrix of components

ψαi =


ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 ψ33 ψ34

ψ41 ψ42 ψ43 ψ44


transforms into

ψ′αi =


ψ12 ψ11 ψ14 ψ13

ψ22 ψ21 ψ24 ψ23

ψ32 ψ31 ψ34 ψ33

ψ42 ψ41 ψ44 ψ43

 . (49)

We see that in the transformed matrix, the �rst and the second column are interchanged. Similarly, also the
third and forth column are interchanged. Di�erent columns represent di�erent left minimal ideals of Cl(1, 3),
and thus di�erent spinors.

Let us now focus our attention on the spinor basis states of the �rst and second ideal:

ξ11 = θ̄1θ̄2 , ξ21 = θ1θ2θ̄1θ̄2 , ξ12 = θ1θ2 , ξ22 = θ̄1θ̄2θ1θ2. (50)

which span the left handed part of the 4-component
spinor (see Eqs.(19,20)).

Under the ϑ = π rotation (44), (45), we have

ξ11 → ξ12 , ξ21 → ξ22 , ξ12 → ξ11 , ξ22 → ξ21, (51)

which means that the spin 1/2 state of the 1st ideal transforms into the spin state of the 2nd ideal, and vice
versa. The above states are eigenvalues of the spin operator, − i

2 γ1γ2,

− i
2
γ1γ2 ξ11 =

1

2
ξ11 , , − i

2
γ1γ2 ξ21 = −1

2
ξ21 , (52)

− i
2
γ1γ2 ξ12 = −1

2
ξ12 , − i

2
γ1γ2 ξ22 =

1

2
ξ22 . (53)

Let us now introduce the new basis states

ξ1
1/2 = 1√

2
(ξ11 + ξ22) , ξ2

1/2 = 1√
2
(ξ11 − ξ22) ,

ξ1
−1/2 = 1√

2
(ξ21 + ξ12) , , ξ2

−1/2 = 1√
2
(ξ21 − ξ12) .

(54)

which are superpositions of the states of the 1st and the 2nd ideal. Under the rotation (44),(45) we have

ξ1
1/2 →

1√
2
(ξ12 + ξ21) = ξ1

−1/2 ,

ξ1
−1/2 →

1√
2
(ξ22 + ξ11) = ξ1

1/2 ,
(55)

ξ2
1/2 →

1√
2
(ξ12 − ξ21) = −ξ2

−1/2,

ξ2
−1/2 →

1√
2
(ξ22 − ξ11) = −ξ2

1/2 .
(56)
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These states also have de�nite spin projection:

− i
2
γ1γ2ξ

1
±1/2 = ± 1

2
ξ1
±1/2 , (57)

− i
2
γ1γ2ξ

2
±1/2 = ± 1

2
ξ2
±1/2 . (58)

The states (55) have the property that under the ϑ = π rotation, the spin 1/2 state ξ1
1/2 transforms into the

spin −1/2 state ξ1
−1/2, and vice versa. Analogous hold for the other set of states, ξ2

1/2, ξ
2
−1/2.

Let us stress again that the transformation in the above example is of the type Φ′ = RΦR−1. This is a
reason that, under such a transformation, a spinor of one ideal is transformed into the spinor of a di�erent ideal.
A transformation R−1, acting from the right, mixes the ideals. Another kind of transformation is Φ′ = RΦ,
in which case there is no mixing of ideals. Such are the usual transformations of spinors. By considering the
objects of the entire Cli�ord algebra and possible transformations among them, we �nd out that spinors are not
a sort of objects that transform di�erently than vectors under rotations. They can transform under rotations in
the same way as vectors, i.e., according to Φ′ = RΦR−1. Here Φ can be a vector, spinor or any other object of
Cli�ord algebra. In addition to this kind of transformations, there exist also the other kind of transformations,
namely, Φ′ = RΦ, where again Φ can be any object of Cl(1, 3), including a vector or a spinor. These are
particular cases of the more general transformations, Φ′ = RΦS, considered in Sec. 1.

Space inversion

Let us now consider space inversion, under which the basis vectors of a reference frame transform according to

γ0 → γ′0 = γ0 , γr → γ′r = −γr , r = 1, 2, 3 . (59)

The vectors of the Witt basis (12) then transform as

θ1 → 1
2 (γ0 − γ3) = θ̄1 ,

θ2 → 1
2 (−γ1 − iγ2) = −θ2,

θ̄1 → 1
2 (γ0 + γ3) = θ1 ,

θ̄2 → 1
2 (−γ1 + iγ2) = −θ̄2 .

′

(60)

A spinor of the �rst left ideal transforms as [4]

(ψ111 + ψ21θ1θ2 + ψ31θ1 + ψ41θ2) θ̄1θ̄2 →
(−ψ111 + ψ21θ̄1θ2 − ψ31θ̄1 + ψ41θ2) θ1θ̄2 . (61)

The latter equation shows that a left handed spinor of the �rst ideal transforms into a right handed spinor of
the third ideal.

In general, under space inversion, the matrix of the spinor basis elements

ξαi =


f1 f2 θ̄1f3 θ1f4

θ1θ2f1 θ̄1θ̄2f2 θ2f3 θ̄2f4

θ1f1 θ̄1f2 f3 f4

θ2f1 θ̄2f2 θ̄1θ2f3 θ1θ̄2f4

 , (62)

transforms into

ξ′αi =


−f3 −f4 −θ1f1 −θ̄1f2

θ̄1θ2f3 θ1θ̄2f4 θ2f1 θ̄2f2

−θ̄1f3 −θ1f4 −f1 −f2

θ2f3 θ̄2f4 θ1θ2f1 θ̄1θ̄2f2

 . (63)
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The matrix of components

ψαi =


ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 ψ33 ψ34

ψ41 ψ42 ψ43 ψ44


transform into

ψαi =


−ψ33 −ψ34 −ψ31 −ψ32

ψ43 ψ44 ψ41 ψ42

−ψ13 −ψ14 −ψ11 −ψ12

ψ23 ψ24 ψ21 ψ22

 . (64)

By comparing (62) and (63), or by inspecting (64), we �nd that the spinor of the 1st ideal transforms into the
spinor of the 3rd ideal, and the spinor of the 2nd ideal transforms into the spinorof the 4th ideal.

Generalized Dirac equation
(Dirac-K�ahler equation)

Let us now consider the Cli�ord algebra valued �elds, Φ(x), that depend on position x ≡ xµ in spacetime. We
will assume that a �eld Φ satis�es the following equation [8] (see also refs. [4, 6]):

(i γµ∂µ −m)Φ = 0, Φ = φAγA = ψÃξÃ = ψαiξαi . (65)

where γA is a multivector basis of Cl(1, 3), and ξÃ ≡ ξαi is a spinor basis of Cl(1, 3), or more precisely, of its
complexi�ed version if ψαi are complex-valued. Here α is the spinor index of a left minimal ideal, whereas the
i runs over four left ideals of Cl(1, 3).

Multiplying Eq. (65) from the left by (ξÃ)‡, where ‡ is the operation of reversion that reverses the order of
vectors in a product, and using the relation

〈(ξÃ)‡γµξB̃〉S ≡ (γµ)ÃB̃ , (66)

and where 〈 〉S is the (properly normalized [9]) scalar part of an expression, we obtain the following matrix
form of the equation (65):(

i (γµ)ÃB̃ ∂µ −mδÃB̃

)
ψB̃ = 0 . (67)

The 16× 16 matrices can be factorized according to

(γµ)ÃB̃ = (γµ)αβ δ
i
j , (68)

where (γµ)αβ are 4× 4 Dirac matrices. Using the latter relation (68), we can write Eq. (67) as(
i (γµ)αβ ∂µ −mδαβ

)
ψβi = 0 , (69)

or more simply,

(i γµ∂µ −m)ψi = 0 . (70)

In the last equation we have omitted the spinor index α.
The action that leads to the generalized Dirac equation (65) is

I =

∫
d4x ψ̄i(i γµ∂µ −m)ψjzij . (71)
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This is an action that describes four spinors ψi, belonging to the four minimal left ideals of Cl(1, 3). Here zij
is the metric in the space of ideals. It is a part of the metric

(ξÃ)‡ ∗ ξB̃ = zÃB̃ = z(αi)(βj) = zαβzij (72)

of the Cli�ord algebra Cl(1, 3), represented in the basis ξÃ:

zij =


1 0 0 0
0 1 0 0
0 0 − 1 0
0 0 0 − 1

 , zαβ =


1 0 0 0
0 1 0 0
0 0 − 1 0
0 0 0 − 1

 . (73)

Gauge covariant action is

I =

∫
d4x ψ̄i(i γµDµ −m)ψjzij , Dµψ

i = ∂µψ
i +Gµ

i
jψ

j . (74)

This action contains the ordinary particles and mirror particles. The �rst and the second columns of the matrix
ψαi, written explicitly in eq. (30) describe the ordinary particles, whereas the third and the forth column in (30)
describe mirror particles.

The SU(2) gauge group acting within the 1st and 2nd ideal can be interpreted as the weak interaction gauge
group for ordinary particles. The SU(2) gauge group acting within the 3rd and 4th ideal can be interpreted as
the weak interaction gauge group for mirror particles. The corresponding two kinds of weak interaction gauge
�elds that can be transformed into each other by space inversion are contained in Gµ

i
j , which is a generalized

gauge �eld occurring in the covariant action (74).
Mirror particles were �rst proposed by Lee and Yang [10]. Subsequently, the idea of mirror particles has been

pursued by Kobzarev et al. [11], and in Refs. [12]� [17]. The possibility that mirror particles are responsible
for dark matter has been explored in many works, e.g., in [18]� [25]. A demonstration that mirror particles can
be explained in terms of algebraic spinors (elements of Cli�ord algebras) was presented in Ref. [4].
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Abstract: First, we review local concepts de�ned previously. A (local) reference frame F can be de�ned
as an equivalence class of admissible spacetime charts (coordinate systems) having a common domain
U and exchanging by a spatial coordinate change. The associated (local) physical space is made of the
world lines having constant space coordinates in any chart of the class. Second, we introduce new,
global concepts. The data of a non-vanishing global vector �eld v de�nes a global �reference �uid".
The associated global physical space is made of the maximal integral curves of that vector �eld. Assume
that, in any of the charts which make some reference frame F: (i) any of those integral curves l has
constant space coordinates xj, and (ii) the mapping l 7→ (xj) is one-to-one. In that case, the local space
can be identi�ed with a part (an open subset) of the global space.
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Introduction

A reference frame, in a broad physical sense, is a three-dimensional network of observers equipped with clocks
and meters. To any reference frame one should be able to associate some three-dimensional space, in which the
observers of the network are by de�nition at rest (even though their mutual distances may depend on time).
Clearly, both notions are fundamental ones for physics. In Newtonian physics, the consideration is in general
(though not always [1, 2]) restricted to reference frames that are rigid with respect to the invariant Euclidean
space metric. The same restriction is used in special relativity: there, one considers mainly the inertial frames,
each of which is rigid with respect to the spatial metric in the considered reference frame.

In the relativistic theories of gravitation, the main object is the spacetime metric, which is a �eld, i.e. it
depends on the spacetime position. Hence, rigid reference frames are not relevant any more. The relevant
notion is that of a reference �uid. A three-dimensional network of observers is de�ned by a time-like vector
�eld v on spacetime [3�6]: v is the unit tangent vector �eld to the world lines of the observers belonging to
the network. However, in the general-relativistic literature, it is often implicit that a reference frame can be
de�ned from the data of a coordinate system (or chart); see e.g. Landau & Lifshitz [7] and Møller [8]. The link
with the de�nition by a 4-velocity vector �eld v was done by Cattaneo [3]. Namely, any admissible chart on the
spacetime, χ : X 7→ (xµ) (µ = 0, ..., 3), de�nes a unique reference �uid, given by its four-velocity �eld v: the
components of v in the chart χ are

v0 ≡ 1
√
g00

, vj = 0 (j = 1, 2, 3). (1)

The vector (1) is invariant under the �internal changes�

x′0 = φ((xµ)), x′k = φk((xj)) (j, k = 1, 2, 3). (2)

We note, however, that this is valid only within the domain of de�nition of the chart χ � an open subset U of
the whole spacetime manifold V.

The notion of the space associated with a reference �uid/network was missing in the general-relativistic
literature. However, it is apparent in experimental or observational papers that one cannot dispense with the
notion of a spatial position (of any part of the experimental apparatus and the observed system). In the absence



72

of a de�nite concept of space, such a position is de�ned by a set of spatial coordinates. This is not satisfactory,
because many di�erent coordinate systems can be de�ned, between which the choice seems arbitrary. One
needs to have a theoretical framework that give a precise meaning to the concept of the space associated with
a reference �uid/network. Only a concept of �spatial tensor" had been de�ned, to our knowledge. Namely,
a spatial tensor at X ∈ V was de�ned as a spacetime tensor which equals its projection onto the hyperplane
HX ≡ v(X)⊥ [4, 9]. This is not a very straightforward de�nition. In addition, a number of time derivatives
along a trajectory can then be introduced [9]. It is di�cult to choose among them.

In this conference paper, we will �rst recall the results obtained previously [10, 11] regarding the de�nition
of a local reference frame and the associated local space. Then we will announce results of a current work, that
aims at de�ning global notions and at relating them to the formerly introduced local notions.

A local de�nition of a reference frame and the associated space

De�ning a �reference �uid" through its 4-velocity �eld is correct but unpractical. On the other hand, �xing a
�reference system" by the data of a chart [7,8] is practical, but one may ask: what is physical here? Is there an
associated space? What if we change the chart?

Space associated with a reference �uid: a sketch

The three-dimensional space manifold N associated with a reference �uid (network of observers) can be intro-
duced as the set of the world lines of the observers of the network [10]. Thus an element (point) of N is a line of
the spacetime manifold V. Spatial tensor �elds are then de�ned simply as tensor �elds on the spatial manifold
N [10]. At the time of that de�nition [10], the network, hence also N, was thus de�ned �physically", and it
was not proved that N is indeed a di�erentiable manifold. Nevertheless, it was noted that the spatial metric
de�ned in Refs. [7] and [8] endows this manifold N with a time-dependent Riemannian metric, thus with a one-
parameter family of metrics. Then, just one time derivative along a trajectory appears naturally [10], precisely
because we have now just a time- dependent spatial metric tensor instead of a general spacetime metric. This
allowed us to unambiguously de�ne Newton's second law in a general spacetime.

A local de�nition of a reference frame

One may de�ne a reference frame as being an equivalence class of charts which are all de�ned on a given open
subset U of the spacetime V and are related two-by-two by a purely spatial coordinate change:

x′0 = x0, x′k = φk((xj)). (3)

This does de�ne an equivalence relation [11]. Thus a reference frame F, i.e. an equivalence class for this relation,
can indeed be given by the data of one chart χ : X 7→ (xµ) with its domain of de�nition U (an open subset of
the spacetime manifold V). Namely, F is the equivalence class of (χ,U). I.e., F is the set of the charts χ′ which
are de�ned on U, and which are such that the transition map f ≡ χ′ ◦ χ−1 ≡ (φµ) corresponds with a purely
spatial coordinate change (3).

The associated space

The former de�nition has physical meaning: the data of a reference frame F determines the world lines (each
of which is included in the common chart domain U):

xj = Constant (j = 1, 2, 3), x0 variable. (4)

The set of these world lines, as x ≡ (xj) varies, is indeed a three-dimensional network. If the charts obey the
admissibility condition g00 > 0, these are time-like world lines. The corresponding 4-velocity �eld v or rather
vF is then given by (1). The world lines (4) as well as the �eld vF are invariant under the �internal changes"
(2). Hence, they are a fortiori invariant under the purely spatial coordinate changes (3). The space M = MF

(in a further step to be equipped with a structure of di�erentiable manifold) is mathematically de�ned as the
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set of the world lines (4).

In full detail: let PS : R4 → R3, X ≡ (xµ) 7→ x ≡ (xj), be the spatial projection. A world line l is an
element of the set MF i� there is a chart χ ∈ F and a triplet x ≡ (xj) ∈ R3, such that l is the set, assumed
non-empty, of all points X in the domain U, whose spatial coordinates are x:

l = {X ∈ U; PS(χ(X)) = x } and l 6= ∅. (5)

Note that the lines (5), hence also their set MF, remain invariant, not only under the purely spatial coordinate
changes (3), but under any change (2). The coordinate changes (2) leave the 4-velocity �eld vF invariant, but
in general they change the reference frame, say from F to F′, since they generally change the time coordinate.
In such a case, we have thus MF = MF′ .

MF is a di�erentiable manifold: sketch of the proof

Consider a chart χ ∈ F. With any world line l ∈ MF, let us associate the triplet x ≡ (xj) made with the
constant spatial coordinates of the points X ∈ l. We thus de�ne a mapping

χ̃ : MF → R3, l 7→ x such that ∀X ∈ l, χj(X) = xj (j = 1, 2, 3). (6)

Through Eq. (5), the world line l ∈ MF is determined uniquely by the data x. I.e., the mapping χ̃ is one-to-one.
Consider the set T of the subsets Ω ⊂ MF such that

∀χ ∈ F, χ̃(Ω) is an open set in R3. (7)

One shows that T is a topology on MF. Then one shows that the set of the mappings χ̃ de�nes a structure of
di�erentiable manifold on that topological space MF: The spatial part of any chart χ ∈ F de�nes a chart χ̃ on
MF [11]. In particular, the compatibility of any two charts χ̃ and χ̃′ on MF stems from the fact that any two
charts χ, χ′ that belong to one reference frame F have a common domain U: since any world line l ∈ MF is
included in U, one shows easily that χ̃′ ◦ χ̃−1 = (φk), the spatial part of the transition map χ′ ◦ χ−1.

Applications of this result

A Hamiltonian operator of relativistic QM depends precisely [12] on the reference frame F as de�ned in Subsect.
. The Hilbert space H of quantum-mechanical states is the set of the square-integrable functions de�ned on the
associated space manifold MF [13]. Prior to this de�nition, H depended on the particular spatial coordinate
system. This does not seem acceptable.

The full algebra of spatial tensors can then be de�ned in a simple way: a spatial tensor �eld is simply a
tensor �eld on the space manifold MF associated with a reference frame F. A simple example is the 3-velocity
of a particle (or a volume element) in a reference frame: this is a spatial vector, i.e., the current 3-velocity at
an event X ∈ U is an element of the tangent space at l(X) ∈ MF. {l(X) is the unique line l ∈ MF, such that
X ∈ l [11].} As another example, the rotation rate of a spatial triad is an antisymmetric spatial tensor �eld of
the (0 2) type [14].

Questions left open by that result

These de�nitions of a reference frame and the associated space manifold apply to a domain U of the spacetime
V, such that at least one regular chart can be de�ned over the whole of U. Thus these are local de�nitions,
since in general the whole spacetime manifold V cannot be covered by a single chart. Whence the questions:

Can the de�nition of a reference �uid by the data of a global four-velocity �eld v lead to a global notion of
space? If yes, what is the link with the former local notions?
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The global space manifold Nv associated with a non-vanishing vector
�eld v

Given a global vector �eld v on the spacetime V, and given an event X ∈ V, let CX be the solution of

dC

ds
= v(C(s)), C(0) = X (8)

that is de�ned on the largest possible open interval IX containing 0 [15]. Call the range lX ≡ CX(IX) ⊂ V the
�maximal integral curve at X". If X ′ ∈ lX , then it is easy to show that lX′ = lX .

We de�ne the global space Nv associated with the vector �eld v as the set of the maximal integral curves of
v :

Nv ≡ {lX ; X ∈ V}. (9)

Local existence of adapted charts

A chart χ with domain U ⊂ V is said v�adapted i� the spatial coordinates remain constant on any integral
curve l of v � more precisely, remain constant on l ∩U:

∀l ∈ Nv, ∃x ≡ (xj) ∈ R3 :

∀X ∈ l ∩U, PS(χ(X)) = x. (10)

For any v�adapted chart χ, the mapping

χ̄ : l 7→ x such that (10) is verified (11)

is well de�ned on

DU ≡ {l ∈ Nv; l ∩U 6= ∅}. (12)

Call the v�adapted chart χ nice if the mapping χ̄ is one-to-one. On the other hand, call a non-vanishing 1

global vector �eld v normal if its �ow has the following property that, we can indicate convincingly, is true
unless v is �pathological": Any point X ∈ V has an open neighborhood U such that: (i) for any maximal integral
curve l of v, the intersection l ∩ U is a connected set, and (ii) there is a chart χ with domain U, such that the
corresponding natural basis (∂µ) veri�es v = ∂0 in U. It is easy to prove the following:

Theorem 1. Let the global non-vanishing vector �eld v on V be normal. Then, for any point X ∈ V, there
exists a nice v�adapted chart χ whose domain is an open neighborhood of X.

Manifold structure of the global set Nv

Consider the set Fv made of all nice v�adapted charts on the spacetime manifold V, and consider the set A
made of the mappings χ̄, where χ ∈ Fv, Eq. (11). A such mapping χ̄ is de�ned on the set DU � a subset of
the three-dimensional �space" Nv, Eq. (12). (Here U is the domain of the v�adapted chart χ ∈ Fv.) When
Theorem 1 above applies, we can go further:

First, in exactly the same way as that used [11] to prove that the set T (7) is a topology on the �local" space
MF, we can show that the set T ′ of the subsets Ω ⊂ Nv such that

∀χ ∈ Fv, χ̄(Ω) is an open set in R3, (13)

1 Note that a time-like vector �eld is non-vanishing. However, we don't need that v be time-like.
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is a topology on the global space Nv. [We de�ne χ̄(Ω) ≡ χ̄(Ω ∩DU).]

Second, we can show that A is an atlas on that topological space, thus de�ning a structure of di�erentiable
manifold on the global set Nv. In order to show this, the main thing to prove is the compatibility of any two
charts χ̄, χ̄′ on Nv, associated with two nice v-adapted charts χ, χ′ ∈ Fv.

In the case of the space manifold MF associated with a local reference frame F, the compatibility of two
associated charts χ̃ and χ̃′ on MF was rather easy to prove, see the end of Sect. . In contrast, two v -adapted
charts χ and χ′ have in general di�erent domains U and U′ and we may have

U ∩U′ = ∅, l ∩U 6= ∅, l ∩U′ 6= ∅. (14)

I.e., the domains of the charts χ and χ′ do not overlap, but the domains of the mappings χ̄ and χ̄′ do. The
solution of this di�culty can be sketched as follows. Consider x ∈ Dom(χ̄′ ◦ χ̄−1) = χ̄(DU ∩ DU′). Since
x ∈ χ̄(DU), ∃l ∈ Nv and ∃X ∈ l ∩ U: x = χ̄(l) = PS(χ(X)). Let χ(X) = (t,x). We use the �ow of the vector
�eld v to associate smoothly with any point Y in some neighborhood W ⊂ U of X, a point g(Y ) ∈ U′. Then
we may write for y in a neighborhood of x:(

χ̄′ ◦ χ̄−1
)

(y) = PS(χ′(g(χ−1(t,y)))), (15)

showing the smoothness of χ̄′ ◦ χ̄−1. Using this, we show that the set A of the mappings χ̄ is an atlas on Nv,
making it a di�erentiable manifold.

The local manifold MF is a submanifold of Nv

Let v be a normal non-vanishing vector �eld on V, and let F be a reference frame made of nice v�adapted
charts, all de�ned on the same open set U ⊂ V.

Let l ∈ MF, thus there is some chart χ ∈ F and some x ∈ R3 such that l = {X ∈ U; PS(χ(X)) = x }. Then,
for any X ∈ l, the curve lX is the same maximal integral curve l′ ∈ Nv , and we have l = l′ ∩ U. We have
moreover l′ = χ̄−1(x) = χ̄−1(χ̃(l)). Hence, the mapping I : MF → Nv, l 7→ l′ is just I = χ̄−1 ◦ χ̃. This
one-to-one mapping of Dom(χ̃) = MF onto Dom(χ̄) = DU is a di�eomorphism, hence it is an immersion of MF

into Nv. Thus MF is made of the intersections with the local domain U of the world lines belonging to Nv, and
we may identify the local space MF with the submanifold I(MF) = DU of the global space Nv. Now the manifold
structure of Nv entails that, for any nice v-adapted chart χ ∈ Fv, the associated mapping χ̄ with domain DU is
a chart on the topological space (Nv, T ′). In turn, this fact involves the statement that DU is more speci�cally
an open subset of Nv.

Conclusion

A reference frame can be de�ned as an equivalence class of spacetime charts χ which have a common domain U
and which exchange two-by-two by a purely spatial coordinate change [11]. In addition to being mathematically
correct, this de�nition is practical, because it gives a methodology to use coordinate systems in a consistent and
physically meaningful way: the data of one spacetime coordinate system (xµ) de�nes (in its domain of de�nition
U) the 4-velocity �eld of a network of observers, Eq. (1). The coordinate systems that exchange with (xµ) by a
purely spatial coordinate change (3) belong to the same reference frame and indeed the associated 4-velocity �eld
(1) is the same. Using a general coordinate change instead, allows us to go to any other possible reference frame.

A precise notion of the physical space associated with a given reference network did not exist before for a general
spacetime, to our knowledge. We de�ned two distinct concepts: a local one and a global one, which however
are intimately related together. In either case, the space is the set of the world lines that belong to the given
(local) reference frame, respectively to the given (global) reference �uid:

i) Consider a (local) reference frame in the speci�c sense meant here, i.e. a set F of charts, all de�ned on
the same subdomain U of the spacetime, and exchanging by a change of the form (3). This allows one to de�ne
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a �local space" MF: this is the set of the world lines (4) [more precisely the set of the world lines (5)] [11]. Each
of these world lines is included in the common domain U of all charts χ ∈ F.

ii) The data of a (global) reference �uid, i.e. a global non-vanishing 4-vector �eld v , allows one to de�ne a
�global space" Nv: this is the set of the maximal integral curves of v .

Both of the local space MF and the global space Nv can be endowed with a structure of di�erentiable manifold
(when Theorem 1 applies, for the global space). The manifold structure gives a �rm status to the space attached
to a reference network and allows us to de�ne spatial tensors naturally, as tensor �elds on the space manifold.
It has also a practical aspect: Locally, the position of a point in the space can be speci�ed by di�erent sets
of spatial coordinates, which exchange smoothly: x′k = φk((xj)) (j, k = 1, 2, 3), and we may use standard
di�erential calculus for mappings de�ned on that space, by choosing any such coordinates. This applies to both
the local space MF and the global space Nv.

There is a close link between the local space MF and the global space Nv, provided the three-dimensional
network of observers is indeed the same in the two cases � i.e., provided that, in any of the charts which make
the reference frame F: (i) any of the integral curves l ∈ Nv has constant space coordinates xj , and (ii) the
mapping l 7→ (xj) is one-to-one. If that is true, one may associate with each world line l ∈ MF the world line
l′ ∈ Nv, of which l is just the intersection with the domain U. Thus the local space can be identi�ed with an
open subset of the global space.
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Abstract: A generalized theory of gauge transformations is presented on the basis of the covariant
Hamiltonian formalism of �eld theory, for which the covariant canonical �eld equations are equivalent
to the Euler-Lagrange �eld equations. Similar to the canonical transformation theory of point dynamics,
the canonical transformation rules for �elds are derived from generating functions. Thus�in contrast
to the usual Lagrangian description�the covariant canonical transformation formalism automatically
ensures the mappings to preserve the action principle, and hence to be physical. On that basis, we
work out the theory of inhomogeneous local gauge transformations that generalizes the conventional
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this description, which thus could supersede the Higgs mechanism.
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�Die Fruchtbarkeit des neuen Gesichtspunktes der Eichinvarianz h�atte sich vor allem am Problem der Materie
zu zeigen.� (Weyl 1919 [1])
�The fruitfulness of the new viewpoint of gauge invariance would have to show up in particular on the problem
of matter.�

Introduction

The principle of local gauge invariance has been proven to be an eminently fruitful device for deducing all
elementary particle interactions within the standard model. On the other hand, the gauge principle is justi�ed
only as far as it �works�: a deeper rationale underlying the gauge principle apparently does not exist. In this
respect, the gauge principle corresponds to other basic principles of physics, such as Fermat's �principle of least
time�, the �principle of least action� as well as its quantum generalization leading to Feynman's path integral
formalism. The failure of the conventional gauge principle to explain the existence of massive gauge bosons has
led to supplementing it with the Higgs-Kibble mechanism [2,3].

An alternative strategy to resolve the mass problem would be to directly generalize the conventional gauge
principle in a natural way. One way to achieve this was to require the system's covariant Hamiltonian to be
form-invariant not only under unitary transformations of the �elds in iso-space, but also under variations of
the space-time metric. This idea of a generalization of the conventional gauge principle has been successfully
worked out and was published recently [4]. In this description, the gauge �eld causes a non-vanishing curvature
tensor, and this curvature tensor appears in the �eld equations as a mass factor.

With the actual paper, a second natural generalization of the conventional gauge transformation formalism
will be presented that extends the conventional SU(N) gauge theory to include inhomogeneous linear mappings
of the �elds. As it turns out, the local gauge-invariance of the system's Lagrangian then requires the existence of
massive gauge �elds, with the mass playing the role of a second coupling constant. We thereby tackle the long-
standing inconsistency of the conventional gauge principle that requires gauge bosons to be massless in order
for any theory to be locally gauge-invariant. This will be achieved without postulating a particular potential
function (�Mexican hat�) and without requiring a �symmetry breaking� phenomenon.

Conventional gauge theories are commonly derived on the basis of Lagrangians of relativistic �eld theory (cf,
for instance, [5�7]). Although perfectly valid, the Lagrangian formulation of gauge transformation theory is not
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the optimum choice. The reason is that in order for a Lagrangian transformation theory to be physical, hence
to maintain the action principle, it must be supplemented by additional structure, referred to as the minimum
coupling rule.

In contrast, the formulation of gauge theories in terms of covariant Hamiltonians (cf, for instance,
Kanatchikov [8])�each of them being equivalent to a corresponding Lagrangian�may exploit the framework
of the canonical transformation formalism. With the transformation rules for all �elds and their canonical
conjugates being derived from generating functions, we restrict ourselves from the outset to exactly the subset
of transformations that preserve the action principle, hence ensure the actual gauge transformation to be phys-
ical. No additional structure needs to be incorporated for setting up an amended Hamiltonian that is locally
gauge-invariant on the basis of a given globally gauge-invariant Hamiltonian. The covariant derivative�de�ned
by the minimum coupling rule�automatically arises as the respective canonical momentum. Furthermore, it is
no longer required to postulate the �eld tensor to be skew-symmetric in its space-time indices as this feature
directly emerges from the canonical transformation formalism.

Prior to working out the inhomogeneous local gauge transformation theory in the covariant Hamiltonian
formalism�the latter dating back to DeDonder [9] and Weyl [10]�a concise review of the concept of covari-
ant Hamiltonians in local coordinate representation is outlined in . Thereafter, the canonical transformation
formalism in the realm of �eld theory is sketched brie�y in . In these sections, we restrict our presentation
to exactly those topics of the canonical formalism that are essential for working out the inhomogeneous gauge
transformation theory, which will �nally be covered in .

The requirement of inhomogeneous local gauge invariance naturally generalizes the conventional SU(N)
gauge principle (cf, for instance, [11]), where the form-invariance of the covariant Hamiltonian density is de-
manded under homogeneous unitary mappings of the �elds in iso-space. In the �rst step, a generating function
of type FFF 2 is set up that merely describes the demanded transformation of the �elds in iso-space. As usual, this
transformation forces us to introduce gauge �elds that render an appropriately amended Hamiltonian locally
gauge-invariant if the gauge �elds follow a particular transformation law. In our case of an inhomogeneous
mapping, we are forced to introduce two independent sets of gauge �elds, each of them requiring its own
transformation law.

In the second step, an amended generating function FFF 2 is constructed in a way to de�ne these transformation
laws for the two sets of gauge �elds in addition to the rules for the base �elds. As the characteristic feature
of the canonical transformation formalism, this amended generating function also provides the transformation
law for the conjugates of the gauge �elds and for the Hamiltonian. This way, we derive the Hamiltonian that is
form-invariant under both the inhomogeneous mappings of the base �elds as well as under the required mappings
of the two sets of gauge �elds.

In a third step, it must be ensured that the canonical �eld equations emerging from the gauge-invariant
Hamiltonian are consistent with the canonical transformation rules. As usual in gauge theories, the Hamiltonian
must be further amended by terms that describe the free-�eld dynamics of the gauge �elds while maintaining
the overall form-invariance of the �nal Hamiltonian. Amazingly, this also works for our inhomogeneous gauge
transformation theory and uniquely determines the �nal gauge-invariant Hamiltonian H3.

The HamiltonianH3 is then Legendre-transformed to yield the equivalent gauge-invariant Lagrangian density
L3. The latter can then serve as the starting point to set up the Feynman diagrams for the various mutual
interactions of base and gauge �elds. As an example, the locally gauge-invariant Lagrangian that emerges from
a base system of an N -tuple of massless spin-0 �elds is presented.

Covariant Hamiltonian density

In �eld theory, the Hamiltonian density is usually de�ned by performing an incomplete Legendre transformation
of a Lagrangian density L that only maps the time derivative ∂tφ of a �eld φ(t, x, y, z) into a corresponding
canonical momentum variable, πt. Taking then the spatial integrals results in a description that corresponds
to that of non-relativistic Hamiltonian point dynamics. Yet, in analogy to relativistic point dynamics [12], a
covariant Hamiltonian description of �eld theory must treat space and time variables on equal footing. If L is
a Lorentz scalar, this property is passed to the covariant DeDonder-Weyl Hamiltonian density H that emerges
from a complete Legendre transformation of L. Moreover, this description enables us to devise a consistent
theory of canonical transformations in the realm of classical �eld theory.
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Covariant canonical �eld equations

The transition from particle dynamics to the dynamics of a continuous system is based on the assumption that a
continuum limit exists for the given physical problem (cf, for instance, [13]). This limit is de�ned by letting the
number of particles involved in the system increase over all bounds while letting their masses and distances go
to zero. In this limit, the information on the location of individual particles is replaced by the value of a smooth
function φ(x) that is given at a spatial location x1, x2, x3 at time t ≡ x0. In this notation, the index µ runs from
0 to 3, hence distinguishes the four independent variables of space-time xµ ≡ (x0, x1, x2, x3) ≡ (t, x, y, z), and
xµ ≡ (x0, x1, x2, x3) ≡ (t,−x,−y,−z). We furthermore assume that the given physical problem can be described
in terms of a set of I = 1, . . . , N�possibly interacting�scalar �elds φI(x), with the index �I� enumerating the
individual �elds. A transformation of the �elds in iso-space is not associated with any non-trivial metric. We,
therefore, do not use superscripts for these indices as there is not distinction between covariant and contravariant
components. In contrast, Greek indices are used for those components that are associated with a metric�such
as the derivatives with respect to a space-time variable, xµ. Throughout the article, the summation convention
is used. Whenever no confusion can arise, we omit the indices in the argument list of functions in order to avoid
the number of indices to proliferate.

The Lagrangian description of the dynamics of a continuous system is based on the Lagrangian density
function L that is supposed to carry the complete information on the given physical system. In a �rst-order
�eld theory, the Lagrangian density L is de�ned to depend on the φI , possibly on the vector of independent
variables xµ, and on the four �rst derivatives of the �elds φI with respect to the independent variables, i.e., on
the 1-forms (covectors)

∂µφI ≡ (∂tφI , ∂xφI , ∂yφI , ∂zφI).

The Euler-Lagrange �eld equations are then obtained as the zero of the variation δS of the action integral

S =

∫
L(φI , ∂µφI , x) d4x (1)

as

∂

∂xα
∂L

∂(∂αφI)
− ∂L
∂φI

= 0. (2)

To derive the equivalent covariant Hamiltonian description of continuum dynamics, we �rst de�ne for each �eld
φI(x) a 4-vector of conjugate momentum �elds πµI (x). Its components are given by

πµI =
∂L

∂(∂µφI)
≡ ∂L

∂
(
∂φI
∂xµ

) . (3)

The 4-vector πµI is thus induced by the Lagrangian L as the dual counterpart of the 1-form ∂µφI . For the
entire set of N scalar �elds φI(x), this establishes a set of N conjugate 4-vector �elds. With this de�nition
of the 4-vectors of canonical momenta πI(x), we can now de�ne the Hamiltonian density H(φI , πI , x) as the
covariant Legendre transform of the Lagrangian density L(φI , ∂µφI , x)

H(φI , πI , x) = παJ
∂φJ
∂xα

− L(φI , ∂µφI , x). (4)

In order for the Hamiltonian H to be valid, we must require the Legendre transformation to be regular, which
means that for each index �I� the Hesse matrices (∂2L/∂(∂µφI) ∂(∂νφI)) are non-singular. This ensures that
by means of the Legendre transformation, the Hamiltonian H takes over the complete information on the given
dynamical system from the Lagrangian L. The de�nition of H by Eq. (4) is referred to in literature as the
�DeDonder-Weyl� Hamiltonian density.

Obviously, the dependencies of H and L on the φI and the xµ only di�er by a sign,

∂H
∂xµ

∣∣∣∣
expl

= − ∂L
∂xµ

∣∣∣∣
expl

,
∂H
∂φI

= − ∂L
∂φI

= − ∂

∂xα
∂L

∂(∂αφI)
= −∂π

α
I

∂xα
.

These variables thus do not take part in the Legendre transformation of Eqs. (3), (4). Thus, with respect to
this transformation, the Lagrangian density L represents a function of the ∂µφI only and does not depend on
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the canonical momenta πµI , whereas the Hamiltonian density H is to be considered as a function of the πµI only
and does not depend on the derivatives ∂µφI of the �elds. In order to derive the second canonical �eld equation,
we calculate from Eq. (4) the partial derivative of H with respect to πµI ,

∂H
∂πµI

= δIJ δ
α
µ

∂φJ
∂xα

=
∂φI
∂xµ

⇐⇒ ∂L
∂(∂µφI)

= παJ δIJ δ
µ
α = πµI .

The complete set of covariant canonical �eld equations is thus given by

∂H
∂πµI

=
∂φI
∂xµ

,
∂H
∂φI

= −∂π
α
I

∂xα
. (5)

This pair of �rst-order partial di�erential equations is equivalent to the set of second-order di�erential equations
of Eq. (2). We observe that in this formulation of the canonical �eld equations, all coordinates of space-time
appear symmetrically�similar to the Lagrangian formulation of Eq. (2). Provided that the Lagrangian density
L is a Lorentz scalar, the dynamics of the �elds is invariant with respect to Lorentz transformations. The
covariant Legendre transformation (4) passes this property to the Hamiltonian density H. It thus ensures a
priori the relativistic invariance of the �elds that emerge as integrals of the canonical �eld equations if L�and
hence H�represents a Lorentz scalar.

Canonical transformations in
covariant Hamiltonian �eld theory

The covariant Legendre transformation (4) allows us to derive a canonical transformation theory in a way
similar to that of point dynamics. The main di�erence is that now the generating function of the canonical
transformation is represented by a vector rather than by a scalar function. The main bene�t of this formalism is
that we are not dealing with arbitrary transformations. Instead, we restrict ourselves right from the beginning to
those transformations that preserve the form of the action functional. This ensures all eligible transformations
to be physical. Furthermore, with a generating function, we not only de�ne the transformations of the �elds
but also pinpoint simultaneously the corresponding transformation law of the canonical momentum �elds.

Generating functions of type F1(φ,Φ, x)

Similar to the canonical formalism of point mechanics, we call a transformation of the �elds (φ, π) 7→ (Φ,Π)
canonical if the form of the variational principle that is based on the action functional (1) is maintained,

δ

∫
R

(
παI

∂φI
∂xα

−H(φ, π, x)

)
d4x

!
= δ

∫
R

(
Πα
I

∂ΦI
∂xα

−H′(Φ,Π, x)

)
d4x. (6)

Equation (6) tells us that the integrands may di�er by the divergence of a vector �eld Fµ1 , whose variation
vanishes on the boundary ∂R of the integration region R within space-time

δ

∫
R

∂Fα1
∂xα

d4x = δ

∮
∂R

Fα1 dSα
!
= 0.

The immediate consequence of the form invariance of the variational principle is the form invariance of the
covariant canonical �eld equations (5)

∂H′

∂Πµ
I

=
∂ΦI
∂xµ

,
∂H′

∂ΦI
= −∂Πα

I

∂xα
.

For the integrands of Eq. (6)�hence for the Lagrangian densities L and L′�we thus obtain the condition

L = L′ + ∂Fα1
∂xα

παI
∂φI
∂xα

−H(φ, π, x) = Πα
I

∂ΦI
∂xα

−H′(Φ,Π, x) +
∂Fα1
∂xα

. (7)
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With the de�nition Fµ1 ≡ Fµ1 (φ,Φ, x), we restrict ourselves to a function of exactly those arguments that now
enter into transformation rules for the transition from the original to the new �elds. The divergence of Fµ1
writes, explicitly,

∂Fα1
∂xα

=
∂Fα1
∂φI

∂φI
∂xα

+
∂Fα1
∂ΦI

∂ΦI
∂xα

+
∂Fα1
∂xα

∣∣∣∣
expl

. (8)

The rightmost term denotes the sum over the explicit dependence of the generating function Fµ1 on the xν . Com-
paring the coe�cients of Eqs. (7) and (8), we �nd the local coordinate representation of the �eld transformation
rules that are induced by the generating function Fµ1

πµI =
∂Fµ1
∂φI

, Πµ
I = −∂F

µ
1

∂ΦI
, H′ = H+

∂Fα1
∂xα

∣∣∣∣
expl

. (9)

The transformation rule for the Hamiltonian density implies that summation over α is to be performed. In
contrast to the transformation rule for the Lagrangian density L of Eq. (7), the rule for the Hamiltonian density
is determined by the explicit dependence of the generating function Fµ1 on the xν . Hence, if a generating
function does not explicitly depend on the independent variables, xν , then the value of the Hamiltonian density
is not changed under the particular canonical transformation emerging thereof.

Di�erentiating the transformation rule for πµI with respect to ΦJ , and the rule for Πµ
J with respect to φI ,

we obtain a symmetry relation between original and transformed �elds

∂πµI
∂ΦJ

=
∂2Fµ1
∂φI∂ΦJ

= −
∂Πµ

J

∂φI
.

The emerging of symmetry relations is a characteristic feature of canonical transformations. As the symmetry
relation directly follows from the second derivatives of the generating function, is does not apply for arbitrary
transformations of the �elds that do not follow from generating functions.

Generating functions of type F2(φ,Π, x)

The generating function of a canonical transformation can alternatively be expressed in terms of a function of
the original �elds φI and of the new conjugate �elds Πµ

I . To derive the pertaining transformation rules, we
perform the covariant Legendre transformation

Fµ2 (φ,Π, x) = Fµ1 (φ,Φ, x) + ΦJΠµ
J , Πµ

I = −∂F
µ
1

∂ΦI
. (10)

By de�nition, the functions Fµ1 and Fµ2 agree with respect to their φI and x
µ dependencies

∂Fµ2
∂φI

=
∂Fµ1
∂φI

= πµI ,
∂Fα2
∂xα

∣∣∣∣
expl

=
∂Fα1
∂xα

∣∣∣∣
expl

= H′ −H.

The variables φI and x
µ thus do not take part in the Legendre transformation from Eq. (10). Therefore, the

two Fµ2 -related transformation rules coincide with the respective rules derived previously from Fµ1 . As F
µ
1 does

not depend on the Πµ
I whereas Fµ2 does not depend on the the ΦI , the new transformation rule thus follows

from the derivative of Fµ2 with respect to Πν
J as

∂Fµ2
∂Πν

I

= ΦJ
∂Πµ

J

∂Πν
I

= ΦJ δJI δ
µ
ν .

We thus end up with set of transformation rules

πµI =
∂Fµ2
∂φI

, ΦI δ
µ
ν =

∂Fµ2
∂Πν

I

, H′ = H+
∂Fα2
∂xα

∣∣∣∣
expl

, (11)

which is equivalent to the set (9) by virtue of the Legendre transformation (10) if the matrices (∂2Fµ1 /∂φI∂ΦJ)
are non-singular. From the second partial derivations of Fµ2 one immediately derives the symmetry relation

∂πµI
∂Πν

J

=
∂2Fµ2
∂φI∂Πν

J

=
∂ΦJ
∂φI

δµν ,

whose existence characterizes the transformation to be canonical.
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Gauge theories as canonical transformations

Devising gauge theories in terms of canonical transformations turns out to be a particularly useful application of
the canonical formalism in the realm of classical �eld theory. The systematic procedure to pursue is as follows:

1. Construct the generating function Fµ2 that de�nes the desired local transformation of the �elds of the
given covariant system Hamiltonian H. If the given system is described in terms of a Lagrangian L, the
corresponding Hamiltonian H is obtained by a covariant Legendre transformation according to Eq. (4).

2. Calculate the divergence of Fµ2 to �nd the transformation rule for the Hamiltonian H.

3. Introduce the appropriate gauge �eld Hamiltonian Hg that is eligible to compensate the terms of the
divergence of Fµ2 .

4. Derive the transformation rules for the gauge �elds from the requirement that the amended Hamiltonian
H1 = H+Hg be form-invariant.

5. Construct the amended generating function F̃µ2 that de�nes the transformation of base �elds and gauge
�elds.

6. Calculate the divergence of F̃µ2 to �nd the transformation rule for the amended Hamiltonian H1.

7. Express the divergence of F̃µ2 in terms of the physical �elds and their conjugates making use of their
transformation rules.

8. Provided that all terms come up in pairs, i.e., if they have the same form in the original and in the
transformed �eld variables, this uniquely determines the form of the Hamiltonian H2 that is locally form-
invariant.

9. Add the Hamiltonian Hkin describing the kinetics of the free gauge �elds. It must be ensured that Hkin is
also form-invariant under the given transformation rules to maintain the local form-invariance of the �nal
Hamiltonian H3 = H2 +Hkin.

10. Optionally Legendre-transform the �nal Hamiltonian H3 to determine the corresponding locally gauge-
invariant Lagrangian L3.

We will follow this procedure in the next section to work out a Lagrangian L3 that is form-invariant under an
inhomogeneous local gauge transformation.

General inhomogeneous local gauge transformation

As a generalization of the homogeneous local U(N) gauge group, we now treat the corresponding inhomogeneous
gauge group for the case of an N -tuple of �elds φI .

External gauge �elds

We consider a system consisting of an N -tuple φ of complex �elds φI with I = 1, . . . , N , and φ its adjoint,

φ =

 φ1

...
φN

 , φ =
(
φ1 · · ·φN

)
.

A general inhomogeneous linear transformation may be expressed in terms of a complex matrix U(x) =(
uIJ(x)

)
, U†(x) =

(
uIJ(x)

)
and a vector ϕ(x) =

(
ϕI(x)

)
that generally depend explicitly on the independent

variables, xµ, as

φ = U φ+ ϕ, φ = φU† + ϕ

ΦI = uIJ φJ + ϕI , ΦI = φJ uJI + ϕI . (12)
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With this notation, φI stands for a set of I = 1, . . . , N complex �elds φI . In other words, U is supposed to
de�ne an isomorphism within the space of the φI , hence to linearly map the φI into objects of the same type.
The quantities ϕI(x) have the dimension of the base �elds φI and de�ne a local shifting transformation of the
ΦI in iso-space. Physically, this means that the system is now required to be form-invariant both under local
unitary transformations in iso-space and under local variations of background �elds ϕI(x).

The transformation (12) follows from a generating function that�corresponding to H�must be a real-valued
function of the generally complex �elds φI and their canonical conjugates, πµI ,

Fµ2 (φ, φ,Πµ,Π
µ
, x) = Π

µ (
U φ+ ϕ

)
+
(
φU† + ϕ

)
Πµ

= Π
µ

K

(
uKJ φJ + ϕK

)
+
(
φK uKJ + ϕJ

)
Πµ
J . (13)

According to Eqs. (11) the set of transformation rules follows as

πµI =
∂Fµ2
∂φI

= Π
µ

KuKJδJI , ΦIδ
µ
ν =

∂Fµ2
∂Πν

I

=
(
φKuKJ + ϕJ

)
δµν δJI

πµI =
∂Fµ2
∂φI

= δIKuKJΠµ
J , ΦIδ

µ
ν =

∂Fµ2
∂Π

ν

I

= δµν δIK
(
uKJφJ + ϕK

)
.

The complete set of transformation rules and their inverses then read in component notation

ΦI = uIJ φJ + ϕI ,ΦI = φJ uJI + ϕI ,Π
µ
I = uIJ π

µ
J ,Π

µ

I = πµJ uJI

φI = uIJ
(
ΦJ − ϕJ

)
, φI =

(
ΦJ − ϕJ

)
uJI , π

µ
I = uIJ Πµ

J , π
µ
I = Π

µ

JuJI . (14)

We restrict ourselves to transformations that preserve the contraction παπα

Π
α
Πα = πα U†U πα = παπα =⇒ U†U = 1 = UU†

Π
α

I ΠIα = παJuJI uIKπKα = παKπKα =⇒ uJI uIK = δJK = uJI uIK .

This means that U† = U−1, hence that the matrix U is supposed to be unitary. As a unitary matrix, U(x) is a
member of the unitary group U(N)

U†(x) = U−1(x), |detU(x)| = 1.

For detU(x) = +1, the matrix U(x) is a member of the special group SU(N).
We require the Hamiltonian density H to be form-invariant under the global gauge transformation (12),

which is given for U,ϕ = const., hence for all uIJ , ϕI not depending on the independent variables, xµ. Gen-
erally, if U = U(x), ϕ = ϕ(x), then the transformation (14) is referred to as a local gauge transformation.
The transformation rule for the Hamiltonian is then determined by the explicitly xµ-dependent terms of the
generating function Fµ2 according to

H′ −H =
∂Fα2
∂xα

∣∣∣∣
expl

= Π
α

I

(
∂uIJ
∂xα

φJ +
∂ϕI
∂xα

)
+

(
φI
∂uIJ
∂xα

+
∂ϕJ
∂xα

)
Πα
J

= παK uKI

(
∂uIJ
∂xα

φJ +
∂ϕI
∂xα

)
+

(
φI
∂uIJ
∂xα

+
∂ϕJ
∂xα

)
uJKπ

α
K

=
(
παK φJ − φKπαJ

)
uKI

∂uIJ
∂xα

+ παI uIJ
∂ϕJ
∂xα

+
∂ϕJ
∂xα

uJIπ
α
I . (15)

In the last step, the identity
∂uJI
∂xµ

uIK + uJI
∂uIK
∂xµ

= 0
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was inserted. If we want to set up a Hamiltonian H1 that is form-invariant under the local, hence xµ-dependent
transformation generated by (13), then we must compensate the additional terms (15) that emerge from the
explicit xµ-dependence of the generating function (13). The only way to achieve this is to adjoin the Hamiltonian
H of our system with terms that correspond to (15) with regard to their dependence on the canonical variables,
φ, φ, πµ, πµ. With a unitary matrix U , the uIJ -dependent terms in Eq. (15) are skew-Hermitian,

uKI
∂uIJ
∂xµ

=
∂uJI
∂xµ

uIK = −uJI
∂uIK
∂xµ

,

∂uKI
∂xµ

uIJ = uJI
∂uIK
∂xµ

= −∂uJI
∂xµ

uIK , (16)

or in matrix notation(
U†

∂U

∂xµ

)†
=
∂U†

∂xµ
U = −U† ∂U

∂xµ
,

(
∂U

∂xµ
U†
)†

= U
∂U†

∂xµ
= − ∂U

∂xµ
U†.

The uKI∂uIJ/∂x
µ-dependent terms in Eq. (15) can thus be compensated by a Hermitian matrix (aaaKJ) of

�4-vector gauge �elds�, with each o�-diagonal matrix element, aaaKJ , K 6= J , a complex 4-vector �eld with
components aKJµ, µ = 0, . . . , 3

uKI
∂uIJ
∂xµ

↔ aKJµ, aKJµ = aKJµ = a∗JKµ.

Correspondingly, the term proportional to uIJ∂ϕJ/∂x
µ is compensated by the µ-componentsMIJbJµ of a vector

MIJ bbbJ of 4-vector gauge �elds,

uIJ
∂ϕJ
∂xµ

↔ MIJbJµ,
∂ϕJ
∂xµ

uJI ↔ bJµMIJ .

The term proportional to ∂ϕJ/∂xuJI is then compensated by the adjoint vector bbbJMIJ . The dimension of
the constant real matrix M is [M ] = L−1 and thus has the natural dimension of mass. The given system
Hamiltonian H must be amended by a Hamiltonian Ha of the form

H1 = H+Ha, Ha = ig
(
παKφJ − φKπαJ

)
aKJα + παIMIJbJα + bJαMIJπ

α
I (17)

in order for H1 to be form-invariant under the canonical transformation that is de�ned by the explicitly xµ-
dependent generating function from Eq. (13). With a real coupling constant g, the �gauge Hamiltonian� Ha is
thus real. Submitting the amended Hamiltonian H1 to the canonical transformation generated by Eq. (13), the
new Hamiltonian H′1 emerges as

H′1 = H1 +
∂Fα2
∂xα

∣∣∣
expl

= H+Ha +
∂Fα2
∂xα

∣∣∣
expl

= H+
(
παKφJ − φKπαJ

) (
ig aKJα + uKI

∂uIJ
∂xα

)
+ παI

(
MIJbJα + uIJ

∂ϕJ
∂xα

)
+
(
bJαMIJ + ∂ϕJ

∂xα uJI

)
παI

!
= H′ + ig

(
Π
α

KΦJ − ΦKΠα
J

)
AKJα + Π

α

IMIJBJα +BJαMIJΠα
I ,

with the AIJµ and BIµ de�ning the gauge �eld components of the transformed system. The form of the system
Hamiltonian H1 is thus maintained under the canonical transformation,

H′1 = H′ +H′a,

H′a = ig
(

Π
α

KΦJ − ΦKΠα
J

)
AKJα + Π

α

IMIJBJα +BJαMIJΠα
I ,

(18)
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provided that the given system Hamiltonian H is form-invariant under the corresponding global gauge trans-
formation (14). In other words, we suppose the given system Hamiltonian H(φ, φ, πµ, πµ, x) to remain form-
invariant if it is expressed in terms of the transformed �elds,

H′(φ, φ,Πµ,Π
µ
, x)

global GT
= H(φ, φ, πµ, πµ, x).

Replacing the transformed base �elds by the original ones according to Eqs. (14), the gauge �elds must satisfy
the condition (

παKφJ − φKπαJ
) (

ig aKJα + uKI
∂uIJ
∂xα

)
+ παI

(
MIJbJα + uIJ

∂ϕJ
∂xα

)
+
(
bJαMIJ + ∂ϕJ

∂xα uJI

)
παI

= ig
(
π αI uIKuJLφL + π αI uIKϕJ − φLuLKuJIπαI − ϕKuJIπαI

)
AKJα

+ π αI uIKMKJBJα +BJαMKJuKIπ
α
I ,

which yields with Eqs. (14) the following inhomogeneous transformation rules for the gauge �elds aaaKJ , bbbJ , and
bbbJ by comparing the coe�cients that are associated with the independent dynamical variables πµI , π

µ
I , π

µ
I φJ ,

and φJπ
µ
I

AKJµ = uKL aLIµ uIJ + 1
ig
∂uKI
∂xµ uIJ

BJµ = M̃JI

(
uIKMKLbLµ − ig AIKµϕK + ∂ϕI

∂xµ

)
(19)

BJµ =
(
bLµMKLuKI + ig ϕKAKIµ + ∂ϕI

∂xµ

)
M̃JI .

Herein, M̃ denotes the inverse matrix of M , hence M̃KJMJI = MKJM̃JI = δKI . We observe that for any type
of canonical �eld variables φI and for any Hamiltonian system H, the transformation of both the matrix aaaIJ as
well as the vector bbbI of 4-vector gauge �elds is uniquely determined according to Eq. (19) by the unitary matrix
U(x) and the translation vector ϕ(x) that determine the local transformation of the N base �elds φ. In a more
concise matrix notation, Eqs. (19) are

AAAµ = U aaaµ U
† + 1

ig
∂U
∂xµ U

†

MBBBµ = UM bbbµ − igAAAµϕ+ ∂ϕ
∂xµ (20)

BBBµM
T = bbbµM

T U† + ig ϕAAAµ + ∂ϕ
∂xµ .

Inserting the transformation rules for the base �elds, φ = Uφ+ϕ and φ = φU†+ϕ into Eqs. (20), we immediately
�nd the homogeneous transformation conditions

∂φ

∂xµ
− igAAAµφ−MBBBµ = U

(
∂φ
∂xµ − ig aaaµφ−Mbbbµ

)
∂φ

∂xµ
+ ig φAAAµ −BBBµMT =

(
∂φ
∂xµ + ig φaaaµ − bbbµMT

)
U†.

We identify the �amended� partial derivatives as the �covariant derivative� that de�nes the �minimum coupling
rule� for our inhomogeneous gauge transformation. It reduces to the conventional minimum coupling rule for
the homogeneous gauge transformation, hence for ϕ ≡ 0,M ≡ 0.

Including the gauge �eld dynamics

With the knowledge of the required transformation rules for the gauge �elds from Eq. (19), it is now possible
to rede�ne the generating function (13) to also describe the gauge �eld transformations. This simultaneously
de�nes the transformations of the canonical conjugates, pµνJK and qµνJ , of the gauge �elds aJKµ and bJµ, respec-
tively. Furthermore, the rede�ned generating function yields additional terms in the transformation rule for the
Hamiltonian. Of course, in order for the Hamiltonian to be invariant under local gauge transformations, the
additional terms must be invariant as well. The transformation rules for the base �elds φI and the gauge �elds
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aaaIJ , bbbI (Eq. (19)) can be regarded as a canonical transformation that emerges from an explicitly xµ-dependent
and real-valued generating function vector of type F̃µ2 = F̃µ2 (φ, φ,Π,Π, aaa,PPP ,bbb, bbb,QQQ,QQQ, x),

F̃µ2 = Π
µ

K

(
uKJ φJ + ϕK

)
+
(
φK uKJ + ϕJ

)
Πµ
J

+

(
PαµJK + ig M̃LJQ

αµ
L ϕK − ig ϕJQ

αµ

L M̃LK

)
(
uKN aNIα uIJ +

1

ig

∂uKI
∂xα

uIJ

)
+Q

αµ

L M̃LK

(
uKIMIJbJα +

∂ϕK
∂xα

)
+(

bKαMIKuIJ +
∂ϕJ
∂xα

)
M̃LJQ

αµ
L . (21)

With the �rst line of (21) matching Eq. (13), the transformation rules for canonical variables φ, φ and their
conjugates, πµ, πµ, agree with those from Eqs. (14). The rules for the gauge �elds AKJα, BKα, and BKα emerge
as

AKJα δ
µ
ν =

∂F̃µ2
∂PανJK

= δµν

(
uKN aNIα uIJ +

1

ig

∂uKI
∂xα

uIJ

)
BLα δ

µ
ν =

∂F̃µ2
∂Q

αν

L

=

δµν M̃LK

[
uKIMIJbJα +

∂ϕK
∂xα

−
(

ig uKN aNIα uIJ +
∂uKI
∂xα

uIJ

)
ϕJ

]
= δµν M̃LK

(
uKIMIJbJα +

∂ϕK
∂xα

− ig AKJαϕJ

)
BLα δ

µ
ν =

∂F̃µ2
∂QανL

=

δµν

[
bKαMIKuIJ +

∂ϕJ
∂xα

+ ϕK

(
ig uKN aNIα uIJ +

∂uKI
∂xα

uIJ

)]
M̃LJ

= δµν

(
bKαMIKuIJ +

∂ϕJ
∂xα

+ ig ϕK AKJα

)
M̃LJ ,

which obviously coincide with Eqs. (19) as the generating function (21) was devised accordingly. The
transformation of the conjugate momentum �elds is obtained from the generating function (21) as

qνµJ =
∂F̃µ2
∂bJν

= MIJ uIK M̃LK Q
νµ
L , M̃KJQ

νµ
K = uJI M̃KI q

νµ
K

qνµJ =
∂F̃µ2
∂bJν

= Q
νµ

L M̃LK uKIMIJ , Q
νµ

K M̃KJ = qνµK M̃KI uIJ (22)

pνµIN =
∂F̃µ2
∂aNIν

= uIJ

(
P νµJK + ig M̃LJQ

νµ
L ϕK − ig ϕJ Q

νµ

L M̃LK

)
uKN

= uIJ

(
P νµJK + ig M̃LJQ

νµ
L ΦK − igΦJ Q

νµ

L M̃LK

)
uKN

− ig M̃LIq
νµ
L φN + ig φI q

νµ
L M̃LN .

Thus, the expression

pνµIN + ig M̃LIq
νµ
L φN − ig φI q

νµ
L M̃LN

= uIJ

(
P νµJK + ig M̃LJQ

νµ
L ΦK − igΦJ Q

νµ

L M̃LK

)
uKN (23)



87

transforms homogeneously under the gauge transformation generated by Eq. (21). The same homogeneous
transformation law holds for the expression

fIJµν = ∂aIJν
∂xµ −

∂aIJµ
∂xν + ig (aIKνaKJµ − aIKµaKJν)

= uIK FKLµν uLJ (24)

FIJµν = ∂AIJν
∂xµ −

∂AIJµ
∂xν + ig (AIKνAKJµ −AIKµAKJν) ,

which directly follows from the transformation rule (19) for the gauge �elds aIJµ. Making use of the initially
de�ned mapping of the base �elds (12), the transformation rule (19) for the gauge �elds bKµ, bKµ is converted
into

∂ΦJ
∂xµ

− ig AJKµΦK −MJKBKµ =

uJL

(
∂φL
∂xµ

− ig aLKµφK −MLKbKµ

)
∂ΦJ
∂xµ

+ igΦKAKJµ −BKµMJK =(
∂φL
∂xµ

+ ig φKaKLµ − bKµMLK

)
uLJ . (25)

The above transformation rules can also be expressed more clearly in matrix notation

qqqνµ = MTU†M̃TQQQνµ, M̃TQQQνµ = UM̃Tqqqνµ

qqqνµ = QQQ
νµ
M̃ U M, QQQ

νµ
M̃ = qqqνµM̃ U†

pppνµ = U†
(
PPP νµ + ig M̃TQQQνµ ⊗ ϕ− ig ϕ⊗QQQνµM̃

)
U

fffµν = U†Fµν U, fffµν = ∂aaaν
∂xµ −

∂aaaµ
∂xν + ig (aaaνaaaµ − aaaµaaaν) (26)

and

∂φ

∂xµ
− igAAAµφ−MBBBµ = U

(
∂φ

∂xµ
− ig aaaµφ−M bbbµ

)
∂φ

∂xµ
+ ig φAAAµ −BBBµMT =

(
∂φ

∂xµ
+ ig φaaaµ − bbbµMT

)
U†

PPP νµ + ig M̃TQQQνµ ⊗ φ− ig φ⊗QQQνµM̃ =

U
(
pppνµ + ig M̃Tqqqνµ ⊗ φ− ig φ⊗ qqqνµM̃

)
U†.

It remains to work out the di�erence of the Hamiltonians that are submitted to the canonical transformation
generated by (21). Hence, according to the general rule from Eq. (11), we must calculate the divergence of the
explicitly xµ-dependent terms of F̃µ2

∂F̃α2
∂xα

∣∣∣∣∣
expl

= Π
α

K

(
∂uKJ
∂xα

φJ +
∂ϕK
∂xα

)
+

(
φK

∂uKJ
∂xα

+
∂ϕJ
∂xα

)
Πα
J

+
(
PαβJK + ig M̃LJQ

αβ
L ϕK − ig ϕJ Q

αβ

L M̃LK

)
···
(
∂uKN
∂xβ

aNIαuIJ + uKNaNIα
∂uIJ
∂xβ

+
1

ig

∂uKI
∂xα

∂uIJ
∂xβ

+
1

ig

∂2uKI
∂xα∂xβ

uIJ

)
+

(
M̃LJQ

αβ
L

∂ϕK
∂xβ

− ∂ϕJ
∂xβ

Q
αβ

L M̃LK

)(
ig uKN aNIα uIJ +

∂uKI
∂xα

uIJ

)
+Q

αβ

L M̃LK

(
∂uKI
∂xβ

MIJbJα +
∂2ϕK
∂xα∂xβ

)
+(

bKαMIK
∂uIJ
∂xβ

+
∂2ϕJ
∂xα∂xβ

)
M̃LJQ

αβ
L .
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(27)

We are now going to express all uIJ - and ϕK-dependencies in (27) in terms of the �eld variables making use
of the canonical transformation rules. To this end, the constituents of Eq. (27) are split into three blocks. The
Π-dependent terms of can be converted this way by means of the transformation rules (14) and (19)

Π
α

K

(
∂uKJ
∂xα φJ + ∂ϕK

∂xα

)
+
(
φK

∂uKJ
∂xα + ∂ϕJ

∂xα

)
Πα
J

= Π
α

K

(
∂uKJ
∂xα uJI(ΦI − ϕI) + ∂ϕK

∂xα

)
+
((

ΦI − ϕI
)
uIK

∂uKJ
∂xα + ∂ϕJ

∂xα

)
Πα
J

= ig
(

Π
α

KΦJ − ΦKΠα
J

)
AKJα + Π

α

KMKJBJα +BKαMJKΠα
J

− ig
(
παKφJ − φKπαJ

)
aKJα −

(
παKMKJbJα + bKαMJKπ

α
J

)
.

(28)

The second derivative terms in Eq. (27) are symmetric in the indices α and β. If we split PαβJK and QαβJ into a

symmetric P
(αβ)
JK , Q

(αβ)
J and a skew-symmetric parts P

[αβ]
JK , P

[αβ]
J in α and β

PαβJK = P
(αβ)
JK + P

[αβ]
JK , P

[αβ]
JK = 1

2

(
PαβJK − P

βα
JK

)
, P

(αβ)
JK = 1

2

(
PαβJK + P βαJK

)
QαβJ = Q

(αβ)
J +Q

[αβ]
J , Q

[αβ]
J = 1

2

(
QαβJ −Q

βα
J

)
, Q

(αβ)
J = 1

2

(
QαβJ +QβαJ

)
,

then the second derivative terms in Eq. (27) vanish for P
[αβ]
JK and Q

[αβ]
J ,

P
[αβ]
JK

∂2uKI
∂xα∂xβ

= 0,
∂2ϕJ
∂xα∂xβ

Q
[αβ]
J = 0, Q

[αβ]

K

∂2ϕK
∂xα∂xβ

= 0.

By inserting the transformation rules for the gauge �elds from Eqs. (19), the remaining terms of (27) for the

skew-symmetric part of PαβJK are converted into

(
P

[αβ]
JK + ig M̃LJQ

[αβ]
L ϕK − ig ϕJ Q

[αβ]

L M̃LK

)
···
(
∂uKN
∂xβ

aNIαuIJ + uKNaNIα
∂uIJ
∂xβ

+ 1
ig
∂uKI
∂xα

∂uIJ
∂xβ

)
+
(
M̃LJQ

[αβ]
L

∂ϕK
∂xβ
− ∂ϕJ

∂xβ
Q

[αβ]

L M̃LK

)
ig AKJα

+Q
[αβ]

L M̃LK
∂uKI
∂xβ

MIJbJα + bJαMIJ
∂uIK
∂xβ

M̃LKQ
[αβ]
L

= − 1
2 ig PαβJK (AKIαAIJβ −AKIβAIJα)

+ 1
2 ig
(
BJβMKJAKIαM̃IL −BJαMKJAKIβM̃IL

)
QαβL

− 1
2 ig Q

αβ

L

(
M̃LIAIKαMKJBJβ − M̃LIAIKβMKJBJα

)
+ 1

2 ig pαβJK (aKIαaIJβ − aKIβaIJα)

− 1
2 ig
(
bJβMKJaKIαM̃IL − bJαMKJaKIβM̃LI

)
qαβL

+ 1
2 ig qαβL

(
M̃LIaIKαMKJbJβ − M̃LIaIKβMKJbJα

)
. (29)
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For the symmetric parts of PαβJK and QαβJ , we obtain(
P

(αβ)
JK + ig M̃LJQ

(αβ)
L ϕK − ig ϕJ Q

(αβ)

L M̃LK

)
···
(
∂uKN
∂xβ

aNIαuIJ + uKLaLIα
∂uIJ
∂xβ

+ 1
ig
∂uKI
∂xα

∂uIJ
∂xβ

+ 1
ig

∂2uKI
∂xα∂xβ

uIJ

)
+
(
M̃LJQ

(αβ)
L

∂ϕK
∂xβ
− ∂ϕJ

∂xβ
Q

(αβ)

L M̃LK

)
ig AKJα

+Q
(αβ)

L M̃LK

(
∂uKI
∂xβ

MIJbJα + ∂2ϕK
∂xα∂xβ

)
+
(
bJαMIJ

∂uIK
∂xβ

+ ∂2ϕK
∂xα∂xβ

)
M̃LKQ

(αβ)
L

=
(
P

(αβ)
JK + ig M̃LJQ

(αβ)
L ϕK − ig ϕJ Q

(αβ)

L M̃LK

)
(
∂AKJα
∂xβ

− uKL ∂aLIα∂xβ
uIJ
)

+Q
(αβ)

L M̃LK

(
∂uKI
∂xβ

MIJbJα + ∂2ϕK
∂xα∂xβ

− ig AKJα
∂ϕJ
∂xβ

)
+
(
bJαMIJ

∂uIK
∂xβ

+ ∂2ϕK
∂xα∂xβ

+ ig ∂ϕJ
∂xβ

AJKα

)
M̃LKQ

(αβ)
L

= 1
2P

αβ
JK

(
∂AKJα
∂xβ

+
∂AKJβ
∂xα

)
+ 1

2Q
αβ

K

(
∂BKα
∂xβ

+
∂BKβ
∂xα

)
+ 1

2

(
∂BKα
∂xβ

+
∂BKβ
∂xα

)
QαβK

− 1
2p
αβ
JK

(
∂aKJα
∂xβ

+
∂aKJβ
∂xα

)
− 1

2q
αβ
K

(
∂bKα
∂xβ

+
∂bKβ
∂xα

)
− 1

2

(
∂bKα
∂xβ

+
∂bKβ
∂xα

)
qαβK . (30)

In summary, by inserting the transformation rules into Eq. (27), the divergence of the explicitly xµ-dependent
terms of F̃µ2 � and hence the di�erence of transformed and original Hamiltonians � can be expressed completely
in terms of the canonical variables as

∂F̃α2
∂xα

∣∣∣
expl

= ig
(

Π
α

KΦJ − ΦKΠα
J

)
AKJα

+Π
α

KMKJBJα +BKαMJKΠα
J

− ig
(
παKφJ − φKπαJ

)
aKJα −

(
παKMKJbJα + bKαMJKπ

α
J

)
− 1

2 ig PαβJK (AKIαAIJβ −AKIβAIJα)

+ 1
2 ig pαβJK (aKIαaIJβ − aKIβaIJα)

+ 1
2 ig
(
BJβMKJAKIαM̃IL −BJαMKJAKIβM̃LI

)
QαβL

− 1
2 ig Q

αβ

L

(
M̃LIAIKαMKJBJβ − M̃LIAIKβMKJBJα

)
− 1

2 ig
(
bJβMKJaKIαM̃IL − bJαMKJaKIβM̃LI

)
qαβL

+ 1
2 ig qαβL

(
M̃LIaIKαMKJbJβ − M̃LIaIKβMKJbJα

)
+ 1

2P
αβ
JK

(
∂AKJα
∂xβ

+
∂AKJβ
∂xα

)
+ 1

2Q
αβ

K

(
∂BKα
∂xβ

+
∂BKβ
∂xα

)
+ 1

2

(
∂BKα
∂xβ

+
∂BKβ
∂xα

)
QαβK

− 1
2p
αβ
JK

(
∂aKJα
∂xβ

+
∂aKJβ
∂xα

)
− 1

2q
αβ
K

(
∂bKα
∂xβ

+
∂bKβ
∂xα

)
− 1

2

(
∂bKα
∂xβ

+
∂bKβ
∂xα

)
qαβK .

We observe that all uIJ and ϕI -dependencies of Eq. (27) were expressed symmetrically in terms of both the orig-
inal and the transformed complex base �elds φJ ,ΦJ and 4-vector gauge �elds aaaJK ,AAAJK ,bbbJ ,BBBJ , in conjunction
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with their respective canonical momenta. Consequently, an amended Hamiltonian H2 of the form

H2 = H(π, φ, x)

+ig
(
παKφJ − φKπαJ

)
aKJα + παKMKJbJα + bKαMJKπ

α
J

− 1
2 ig pαβJK (aKIα aIJβ − aKIβ aIJα) + 1

2p
αβ
JK

(
∂aKJα
∂xβ

+
∂aKJβ
∂xα

)
+ 1

2 ig
(
bJβMKJaKIα − bJαMKJaKIβ

)
M̃LIq

αβ
L

− 1
2 ig qαβL M̃LI

(
aIKαMKJbJβ − aIKβMKJbJα

)
+ 1

2q
αβ
K

(
∂bKα
∂xβ

+
∂bKβ
∂xα

)
+ 1

2

(
∂bKα
∂xβ

+
∂bKβ
∂xα

)
qαβK (31)

is then transformed according to the general rule (11)

H′2 = H2 +
∂F̃α2
∂xα

∣∣∣∣∣
expl

into the new Hamiltonian

H′2 = H(Π, φ, x)

+ig
(

Π
α

KΦJ − ΦKΠα
J

)
AKJα + Π

α

KMKJBJα +BKαMJKΠα
J

− 1
2 ig PαβJK (AKIαAIJβ −AKIβ AIJα) + 1

2P
αβ
JK

(
∂AKJα
∂xβ

+
∂AKJβ
∂xα

)
+ 1

2 ig
(
BJβMKJAKIα −BJαMKJAKIβ

)
M̃LIQ

αβ
L

− 1
2 ig Q

αβ

L M̃LI

(
AIKαMKJBJβ −AIKβMKJBJα

)
+ 1

2Q
αβ

K

(
∂BKα
∂xβ

+
∂BKβ
∂xα

)
+ 1

2

(
∂BKα
∂xβ

+
∂BKβ
∂xα

)
QαβK . (32)

The entire transformation is thus form-conserving provided that the original Hamiltonian H(π, φ, x) is also
form-invariant if expressed in terms of the new �elds, H(Π, φ, x) = H(π, φ, x), according to the transformation
rules (14). In other words, H(π, φ, x) must be form-invariant under the corresponding global gauge transforma-
tion.

As a common feature of all gauge transformation theories, we must ensure that the transformation rules for
the gauge �elds and their conjugates are consistent with the �eld equations for the gauge �elds that follow from
�nal form-invariant amended Hamiltonians, H3 = H2 +Hkin and H′3 = H′2 +H′kin. In other words, Hkin and
the form-alike H′kin must be chosen in a way that the transformation properties of the canonical equations for
the gauge �elds emerging from H3 and H′3 are compatible with the canonical transformation rules (19). These
requirements uniquely determine the form of both Hkin and H′kin. Thus, the Hamiltonians (31) and (32) must
be further amended by �kinetic� terms Hkin and H′kin that describe the dynamics of the free 4-vector gauge
�elds, aaaKJ , bbbJ and AAAKJ ,BBBJ , respectively. Of course, Hkin must be form-invariant as well if expressed in the
transformed dynamical variables in order to ensure the overall form-invariance of the �nal Hamiltonian. An
expression that ful�lls this requirement is obtained from Eqs. (22) and (23)

Hkin = − 1
2q
αβ
J qJαβ − 1

4

(
pαβIJ + ig M̃LIq

αβ
L φJ − ig φI q

αβ
L M̃LJ

)
···
(
pJIαβ + ig M̃KJqKαβ φI − ig φJ qKαβM̃KI

)
. (33)

The condition for the �rst term to be form-invariant is

qαβJ qJαβ = Q
αβ

L M̃LK uKI MIJMNJ︸ ︷︷ ︸
!
=δIN (detM)2

uNR M̃SRQSαβ

= (detM)
2
Q
αβ

L M̃LK M̃JK︸ ︷︷ ︸
!
=δLJ (detM)−2

QJαβ

= Q
αβ

J QJαβ



91

The mass matrix M must thus be orthogonal

MMT = 1 (detM)
2
. (34)

From H3 and, correspondingly, from H′3, we will work out the condition for the canonical �eld equations to be
consistent with the canonical transformation rules (19) for the gauge �elds and their conjugates (22).

With Hkin from Eq. (33), the total amended Hamiltonian H3 is now given by

(35)

H3 = H2 +Hkin = H+Hg

Hg = ig
(
παKφJ − φKπαJ

)
aKJα − 1

2 ig pαβKJ
(
aJIα aIKβ − aJIβ aIKα

)
+ 1

2p
αβ
KJ

(
∂aJKα
∂xβ

+
∂aJKβ
∂xα

)
+ 1

2q
αβ
J

(
∂bJα
∂xβ

+
∂bJβ
∂xα

)
+ 1

2

(
∂bJα
∂xβ

+
∂bJβ
∂xα

)
qαβJ

+παKMKJbJα + bKαMJKπ
α
J

+ 1
2 ig
(
bJβMKJaKIα − bJαMKJaKIβ

)
M̃LIq

αβ
L

− 1
2 ig qαβL M̃LI

(
aIKαMKJbJβ − aIKβMKJbJα

)
− 1

2q
αβ
J qJαβ

−1
4

(
pαβIJ + ig M̃LIq

αβ
L φJ − ig φI q

αβ
L M̃LJ

)
(
pJIαβ + ig M̃KJqKαβ φI − ig φJ qKαβM̃KI

)
.

In the Hamiltonian description, the partial derivatives of the �elds in (35) do not constitute canonical variables
and must hence be regarded as xµ-dependent coe�cients when setting up the canonical �eld equations. The
relation of the canonical momenta pµνNM to the derivatives of the �elds, ∂aMNµ/∂x

ν , is generally provided by
the �rst canonical �eld equation (5). This means for the particular Hamiltonian (35)

∂aMNµ
∂xν =

∂Hg

∂pµνNM

= − 1
2 ig (aMIµ aINν − aMIν aINµ) + 1

2

(
∂aMNµ
∂xν + ∂aMNν

∂xµ

)
− 1

2pMNµν − 1
2 ig
(
M̃IMqIµν φN − φM qIµνM̃IN

)
,

hence

pKJµν = ∂aKJν
∂xµ −

∂aKJµ
∂xν

+ ig
(
aKIν aIJµ − aKIµ aIJν − M̃IKqIµν φJ + φK qIµνM̃IJ

)
. (36)

Rewriting Eq. (36) in the form

pKJµν + igM̃IKqIµνφJ − igφKqIµνM̃IJ

= ∂aKJν
∂xµ −

∂aKJµ
∂xν + ig (aKIνaIJµ − aKIµaIJν)

= fKJµν ,

we realize that the left-hand side transforms homogeneously according to Eq. (23). From Eq. (26), we already
know that the same rule applies for the fffµν . The canonical equation (36) is thus generally consistent with the
canonical transformation rules.
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The corresponding reasoning applies for the canonical momenta qJµν and qJµν

∂bNµ
∂xν

=
∂Hg

∂qµνN
=

− 1
2qNµν −

1
2 ig M̃NI (aIKµMKJ bJν − aIKνMKJ bJµ)

+ 1
2

(
∂bNµ
∂xν + ∂bNν

∂xµ

)
+ 1

2 ig M̃NI

(
pIJµν + ig M̃KIqKµν φJ − ig φI qKµνM̃KJ

)
φJ

∂bNµ
∂xν

=
∂Hg

∂qµνN
=

− 1
2qNµν + 1

2 ig
(
bJνMKJ aKIµ − bJµMKJ aKIν

)
M̃NI

+ 1
2

(
∂bNµ
∂xν + ∂bNν

∂xµ

)
− 1

2 ig φJ

(
pJIµν + ig M̃KJqKµν φI − ig φJ qKµνM̃KI

)
M̃NI ,

hence with the canonical equation (36)

qJµν = ∂bJν
∂xµ −

∂bJµ
∂xν + ig M̃JI (aIKνMKL bLµ − aIKµMKL bLν)

+ ig M̃JI

(
∂aIKν
∂xµ −

∂aIKµ
∂xν + ig (aILν aLKµ − aILµ aLKν)

)
φK

qJµν = ∂bJν
∂xµ −

∂bJµ
∂xν − ig

(
bLµMKL aKIν − bLνMKL aKIµ

)
M̃JI

− ig φK

(
∂aKIν
∂xµ −

∂aKIµ
∂xν + ig (aKLν aLIµ − aKLµ aLIν)

)
M̃JI . (37)

In order to check whether these canonical equations�which are complex conjugate to each other�are also
compatible with the canonical transformation rules, we rewrite the �rst one concisely in matrix notation for the
transformed �elds

MQQQµν = ∂MBBBν
∂xµ −

∂MBBBµ
∂xν + ig (AAAνMBBBµ −AAAµMBBBν)

+ ig
(
∂AAAν
∂xµ −

∂AAAµ
∂xν + ig (AAAνAAAµ −AAAµAAAν)

)
φ.

Applying now the transformation rules for the gauge �elds AAAν ,BBBµ from Eqs. (20), and for the base �elds φ from
Eqs. (12), we �nd

MQQQµν = U
[
∂Mbbbν
∂xµ −

∂Mbbbµ
∂xν + ig (aaaνM bbbµ − aaaµM bbbν)

+ ig
(
∂aaaν
∂xµ −

∂aaaµ
∂xν + ig (aaaνaaaµ − aaaµaaaν)

)
φ
]

= UM qqqµν .

The canonical equations (37) are thus compatible with the canonical transformation rules (26) provided that

M̃T =
M

(detM)
2 .

Thus, the mass matrix M must be orthogonal. This restriction was already encountered with Eq. (34).

We observe that both pKJµν and qJµν , qJµν occur to be skew-symmetric in the indices µ, ν. Here, this feature
emerges from the canonical formalism and does not have to be postulated. Consequently, all products with
the momenta in the Hamiltonian (35) that are symmetric in µ, ν must vanish. As these terms only contribute
to the �rst canonical equations, we may omit them from Hg if we simultaneously de�ne pJKµν and qJµν to
be skew-symmetric in µ, ν. With regard to the ensuing canonical equations, the gauge Hamiltonian Hg from
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Eq. (35) is then equivalent to

Hg = ig
(
π βKφJ − φKπ

β
J

)
aKJβ − ig pαβJI aIKα aKJβ −

1
2 q

αβ
J qJαβ

+
(
π βK − ig q αβL M̃LIaIKα

)
MKJbJβ

+bKβMJK

(
πβJ + ig aJIαM̃LIq

αβ
L

)
− 1

4

(
pαβIJ + ig M̃LIq

αβ
L φJ − ig φI q

αβ
L M̃LJ

)
(
pJIαβ + ig M̃KJqKαβ φI− ig φJ qKαβM̃KI

)
pµνJK

!
= −pνµJK , qµνJ

!
= −qνµJ . (38)

Setting the mass matrix M to zero, Hg reduces to the gauge Hamiltonian of the homogeneous U(N) gauge
theory [11]. The other terms describe the dynamics of the 4-vector gauge �elds bbbJ . From the locally gauge-
invariant Hamiltonian (35), the canonical equations for the base �elds φI , φI are given by

∂φI
∂xµ

∣∣∣∣
H3

=
∂H3

∂πµI
= ∂H

∂πµI
+ ig aIJµφJ +MIJbJµ

∂φI
∂xµ

∣∣∣∣
H3

=
∂H3

∂πµI
= ∂H

∂πµI
− ig φJaJIµ + bJµMIJ . (39)

These equations represent the generalized �minimum coupling rules� for our particular case of a system of two
sets of gauge �elds, aaaJK and bbbJ .

The canonical �eld equation from the bbbJ , bbbJ dependencies of Hg follow as

∂qµαK
∂xα

= − ∂Hg

∂bKµ
= −MJK

(
πµJ + ig aJIαM̃LIq

αµ
L

)
∂qµαJ
∂xα

= − ∂Hg

∂bJµ
=
(
−πµK + ig qαµL M̃LIaIKα

)
MKJ .

Inserting παJ , π
α
J as obtained from Eqs. (39) for a particular system Hamiltonian H, terms proportional to bαI

and b
α

I emerge with no other dynamical variables involved. Such terms describe the masses of particles that are
associated with the gauge �elds bbbI .

Gauge-invariant Lagrangian

As the system Hamiltonian H does not depend on the gauge �elds aaaKJ and bbbJ , the gauge Lagrangian Lg that
is equivalent to the gauge Hamiltonian Hg from Eq. (35) is derived by means of the Legendre transformation

Lg = pαβJK
∂aKJα
∂xβ

+ qαβJ
∂bJα
∂xβ

+
∂bJα
∂xβ

qαβJ −Hg,

with pµνJK from Eq. (36) and qµνJ , qµνJ from Eqs. (37). We thus have

pαβJK
∂aKJα
∂xβ

= 1
2p
αβ
JK

(
∂aKJα
∂xβ

− ∂aKJβ
∂xα

)
+ 1

2p
αβ
JK

(
∂aKJα
∂xβ

+
∂aKJβ
∂xα

)
= − 1

2p
αβ
JK pKJαβ + 1

2p
αβ
JK

(
∂aKJα
∂xβ

+
∂aKJβ
∂xα

)
− 1

2 ig pαβJK

(
aKIα aIJβ − aKIβ aIJα − M̃IKqIβα φJ + φK qIβαM̃IJ

)
,
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and, similarly

q αβJ
∂bJα
∂xβ

=

− 1
2 q

αβ
J qJαβ − 1

2 ig qαβJ M̃JI (aIKαMKL bLβ − aIKβMKL bLα)

+ 1
2 ig q αβJ M̃JI

(
pILαβ + ig M̃KIqKαβ φL − ig φI qKαβM̃KL

)
φL

+ 1
2q

αβ
J

(
∂bJα
∂xβ

+
∂bJβ
∂xα

)
∂bJα
∂xβ

qαβJ =

− 1
2 q

αβ
J qJαβ + 1

2 ig
(
bLβMKL aKIα − bLαMKL aKIβ

)
M̃JIq

αβ
J

− 1
2 ig φI

(
pILαβ + ig M̃KIqKαβ φL − ig φI qKαβM̃KL

)
M̃JLq

αβ
J

+ 1
2

(
∂bJα
∂xβ

+
∂bJβ
∂xα

)
qαβJ .

With the gauge Hamiltonian Hg from Eq. (35), the gauge Lagrangian Lg is then

Lg = − 1
2 q

αβ
J qJαβ

−παK (ig aKJαφJ +MKJbJα) +
(
ig φKaKJα − bKαMJK

)
παJ

− 1
4

(
pαβIJ + ig M̃LIq

αβ
L φJ − ig φI q

αβ
L M̃LJ

)
···
(
pJIαβ + ig M̃KJqKαβ φI − ig φJ qKαβM̃KI

)
According to Eq. (24) and the relation for the canonical momenta pJIαβ from Eq. (36), the last product can be

rewritten as − 1
4f

αβ
IJ fJIαβ , thus

Lg = − 1
4f

αβ
IJ fJIαβ −

1
2 q

αβ
J qJαβ − παK (ig aKJαφJ +MKJbJα) +(

ig φKaKJα − bKαMJK

)
παJ .

With regard to canonical variables πK , πK , Lg is still a Hamiltonian. The �nal total gauge-invariant Lagrangian
L3 for the given system Hamiltonian H then emerges from the Legendre transformation

L3 = Lg + παJ
∂φJ
∂xα + ∂φJ

∂xα π
α
J −H(φI , φI , πI , πI , x)

= παJ

(
∂φJ
∂xα − ig aJKαφK −MJK bKα

)
+
(
∂φJ
∂xα + ig φKaKJα − bKαMJK

)
παJ

− 1
4f

αβ
IJ fJIαβ −

1
2 q

αβ
J qJαβ −H(φI , φI , πI , πI , x). (40)

As implied by the Lagrangian formalism, the dynamical variables are given by both the �elds, φI , φI , aaaKJ ,
bbbJ , and bbbJ , and their respective partial derivatives with respect to the independent variables, xµ. Therefore,
the momenta qqqJ and qqqJ of the Hamiltonian description are no longer dynamical variables in Lg but merely
abbreviations for combinations of the Lagrangian dynamical variables, which are here given by Eqs. (37). The
correlation of the momenta πI , πI of the base �elds φI , φI to their derivatives are derived from the system
Hamiltonian H via

∂φI
∂xµ

= ∂H
∂πµI

+ ig aIJµφJ +MIJbJµ

∂φI
∂xµ

= ∂H
∂πµI
− ig φJ aJIµ + bJµMIJ , (41)

which represents the �minimal coupling rule� for our particular system. Thus, for any globally gauge-invariant
Hamiltonian H(φI , πI , x), the amended Lagrangian (40) with Eqs. (41) describes in the Lagrangian formalism
the associated physical system that is invariant under local gauge transformations.
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Klein-Gordon system Hamiltonian

As an example, we consider the generalized Klein-Gordon Hamiltonian [11] that describes an N -tuple ofmassless
spin-0 �elds

HKG = π αI πIα.

This Hamiltonian is clearly invariant under the inhomogeneous global gauge transformation (14). The reason
for de�ning a massless system Hamiltonian H is that a mass term of the form φIMJIMJKφK that is contained
in the general Klein-Gordon Hamiltonian is not invariant under the inhomogeneous gauge transformation from
Eq. (14). According to Eqs. (40) and (41), the corresponding locally gauge-invariant Lagrangian L3,KG is then

L3,KG = π αI πIα − 1
4f

αβ
JK fKJαβ −

1
2q

αβ
J qJαβ , (42)

with

fKJµν = ∂aKJν
∂xµ −

∂aKJµ
∂xν + ig (aKIν aIJµ − aKIµ aIJν)

qJµν = ∂bJν
∂xµ −

∂bJµ
∂xν

+ig M̃JI

(
aIKνMKL bLµ − aIKµMKL bLν + fIKµν φK

)
qJµν = ∂bJν

∂xµ −
∂bJµ
∂xν

−ig
(
bLµMKL aKIν − bLνMKL aKIµ + φK fKIµν

)
M̃JI

πIµ = ∂φI
∂xµ − ig aIJµφJ −MIJ bJµ

πIµ = ∂φI
∂xµ + ig φJ aJIµ − bJµMIJ .

In matrix notation, the gauge-invariant Lagrangian (42) thus writes

L3,KG =
(
∂φ
∂xα

+ ig φaaaα − bbbαMT
)(

∂φ
∂xα − ig aaaαφ−Mbbbα

)
− Tr

(
1
4fff

αβfffαβ
)
− 1

2qqq
αβqqqαβ

with

fffµν = ∂aaaν
∂xµ −

∂aaaµ
∂xν + ig (aaaν aaaµ − aaaµ aaaν)

Mqqqµν = M
(
∂bbbν
∂xµ −

∂bbbµ
∂xν

)
+ ig

(
aaaνMbbbµ − aaaµMbbbν + fffµνφ

)
qqqµνM

T =
(
∂bbbν
∂xµ −

∂bbbµ
∂xν

)
MT − ig

(
bbbµM

Taaaν − bbbνMTaaaµ + φfffµν

)
.

The terms in parentheses in the �rst line of L3,KG can be regarded as the �minimum coupling rule� for the
actual system. Under the inhomogeneous transformation prescription of the base �elds from Eqs. (12) and the
transformation rules of the gauge �elds from Eqs. (20), the Lagrangian L3,KG is form-invariant. Moreover, the
Lagrangian contains a term that is proportional to the square of the 4-vector gauge �elds bbbJ

bbb
α
MTM bbbα,

which represents a Proca mass term for an N -tuple of possibly charged bosons. Setting up the Euler-Lagrange
equation for the gauge �elds bbbµ, we get

∂qqqµα

∂xα
− igMTaaaα

(
MT

)−1
qqqµα +MT

(
∂φ

∂xµ
− ig aaaµφ

)
−MTM bbbµ = 0.

We observe that this equation describes an N -tuple massive bosonic �elds bJµ, in conjunction with their
interactions with the massless gauge �elds aIJµ and the base �elds, φI .

Expanding the last term of the Lagrangian (42), we can separate this Lagrangian into a renormalizable
Lr

3,KG part

Lr
3,KG = π αI πIα − 1

4f
αβ
JK fKJαβ −

1
2h

αβ

J hJαβ

hJµν = ∂bJν
∂xµ −

∂bJµ
∂xν + ig M̃JI (aIKνMKL bLµ − aIKµMKL bLν)

hJµν = ∂bJν
∂xµ −

∂bJµ
∂xν − ig

(
bLµMKL aKIν − bLνMKL aKIµ

)
M̃JI ,
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and into a non-renormalizable Lnr
3,KG part

Lnr
3,KG =

1
2 ig
[(

∂bJβ
∂xα −

∂bJα
∂xβ

)
M̃JIf

αβ
IKφK − φKf

αβ
KIM̃JI

(
∂bJβ
∂xα −

∂bJα
∂xβ

)]
+ 1

2

(
g

detM

)2 [(
bLαMKL aKIβ − bLβMKL aKIα

)
fαβIJ φJ

+ φKf
αβ
KI

(
aILβMLJ bJα − aILαMLJ bJβ

)
+ φKf

αβ
KIfIJαβφJ

]
.

The �rst line vanishes if we restrict ourselves to real �elds. Lnr
3,KG vanishes completely if g = 0, hence if all

couplings to the massless gauge �elds aaaIK are skipped. This corresponds to a pure shifting transformation that
is generated by Eq. (13) with U = 1.

For the case N = 1, hence for a single base �eld φ, the following twofold amended Klein-Gordon Lagrangian
L3,KG

L3,KG =
(
∂φ
∂xα

+ ig φ aα −mb
α
)(

∂φ
∂xα − ig aαφ−mbα

)
− 1

4f
αβ fαβ − 1

2q
αβqαβ

is form-invariant under the combined local gauge transformation

φ 7→ Φ = φ eiΛ + ϕ, aµ 7→ Aµ = aµ + 1
g
∂Λ
∂xµ

bµ 7→ Bµ = bµ e
iΛ − ig

m

(
aµ + 1

g
∂Λ
∂xµ

)
ϕ+ 1

m
∂ϕ
∂xµ .

The �eld tensors then simplify to

fµν = ∂aν
∂xµ −

∂aµ
∂xν

qµν = ∂bν
∂xµ −

∂bµ
∂xν + ig (aν bµ − aµ bν) + ig

m

(
∂aν
∂xµ −

∂aµ
∂xν

)
φ

qµν = ∂bν
∂xµ −

∂bµ
∂xν − ig

(
bµ aν − bν aµ

)
− ig

mφ
(
∂aν
∂xµ −

∂aµ
∂xν

)
.

With m2 b
α
bα, this locally gauge-invariant Lagrangian contains a mass term for the complex bosonic 4-vector

gauge �eld bµ. The subsequent equation for the massive gauge �eld bµ is thus

∂qµα

∂xα
− ig aαq

µα +m

(
∂φ

∂xµ
− ig aµφ

)
−m2bµ = 0.

From the transformation rule for the �elds, the rule for the momenta Qµν follows as

Qµν = qµν e
iΛ(x).

It is then easy to verify that the �eld equation is indeed form-invariant under the above combined local trans-
formation of the �elds φ, aµ, bµ.

The Lagrangian L3,KG can again be split into a renormalizable part Lr
3,KG

Lr
3,KG =

(
∂φ
∂xα

+ ig φ aα −mb
α
)(

∂φ
∂xα − ig aαφ−mbα

)
− 1

4f
αβ fαβ − 1

2h
αβ
hαβ

fµν = ∂aν
∂xµ −

∂aµ
∂xν

hµν = ∂bν
∂xµ −

∂bµ
∂xν + ig (aν bµ − aµ bν)

hµν = ∂bν
∂xµ −

∂bµ
∂xν − ig

(
bµ aν − bν aµ

)
and a non-renormalizable part Lnr

3,KG,

Lnr
3,KG =

ig

m

(
hαβφ− φhαβ −

ig

m
φφ fαβ

)
fαβ .
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Conclusions

With the present paper, we have worked out a complete non-Abelian theory of inhomogeneous local gauge
transformations. The theory was worked out as a canonical transformation in the realm of covariant Hamiltonian
�eld theory. A particularly useful device was the de�nition of a gauge �eld matrix aaaIJ , with each matrix element
representing a 4-vector gauge �eld. This way, the mutual interactions of base �elds φI and both sets of gauge
�elds, aaaIJ and bbbJ , attain a straightforward algebraic representation as ordinary matrix products.

Not a single assumption or postulate needed to be incorporated in the course of the derivation. Moreover,
no premise with respect to a particular �potential energy� function was required nor any draft on a �symmetry
breaking� mechanism. The only restriction needed to render the theory consistent was to require the mass
matrix to be orthogonal.

Requiring a theory to be form-invariant under the SU(N) gauge group generally enforces all gauge �elds
to be massless. Yet, we are free to de�ne other local gauge groups, under which we require the theory to be
form-invariant. De�ning a local shifting transformations of the base �elds means to submit the given system to
the action of �uctuating background �elds. A local gauge invariance of the system's Hamiltonian then actually
requires the existence of massive gauge �elds. Speci�cally, the formalism enforces to introduce both a set of
massless gauge �elds and a set of massive gauge �elds.

The various mutual interactions of base and gauge �elds that are described by the corresponding gauge-
invariant Lagrangian L3 give rise to a variety of processes that can be used to test whether this beautiful
formalism is actually re�ected by nature.
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are for instance responsible for the spin Hall e�ect in semiconductors or the gravitational birefringence
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Introduction

It has been recently found that light exhibits a spin Hall e�ect similar to the the spin Hall e�ect occurring
for charge carriers in solid-state systems. This shows the universality of the comportment of particles of
di�erent nature. In a medium with position dpendent refractive index, the center of a beam of light undergoes
a spin-dependent displacement perpendicular both to the initial propagation direction and to the change in
the propagation direction. Two di�erent spin (helicity ) components acqu opposite displacements. Therefore,
a linearly polarized light will slightly splits into two beams, each containing di�erent helicity states. Many
authors have shown the importance of the Berry's phase for the understanding of this phenomenon. Indeed,
Berry's phase provides a geometrical frame that describes the light polarization variations along the propagation
trajectory and the additional term which appears in the equations of motion leading to the spin Hall e�ect of
light. We can connecte this e�ect with the back reaction of spin (rapid variable) on the trajectory (slow
variable) [1]- [18].

In this proceeding we want to introduce a pedestrian approach of this e�ect coming from Feynmann brackets
which tell us how to play with the di�erent symmetries laws and with the purpose of introducing the Berry
phase in the formalism of the Noncommutative Quantum Mechanics (NCQM). The paper is organized as follows.
We begin by brie�y introducing the formalism of Feynman's brackets, then from the approach of the NCQM
we show how to retrieve the spin Hall e�ect of spinning particules. As an application we consider the photon
propagating in a gravitationnal �eld.

Feynman brackets

Feynman's proof of Maxwell equation

A remarkable way to solve Maxwell's equations is exposed in an old unpublished work of Feynman, reported in
an elegant paper by Dyson [19] published in 1990. Initial Feynman's motivation was to develop a quantization
procedure without resort to a Lagrangian or a Hamiltonian. For this goal let consider a non relativistic particle

of mass m submitted to an external force: md
.
x
i

dt = F i(x,
.
x, t) and the �bber tangent space with a symplectic

structure de�ned by the � Feynman brackets �
[
xi, xj

]
= 0 and

[
xi,

.
x
j
]

= δij .
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From only the assumptions of Leibnitz law and Jacobi identity Feynman, in 1948, deduced the following
relations [

.
x
i
,
.
x
j
]

= F ij(x, t) = εijkBk(x, t);F i(x,
.
x, t)

= Ei(x, t) + εijkvjBk(x, t); div
−→
B = 0 and

−→
rot
−→
E = −

−→
∂B

∂t
(1)

So(3) symmetry

In order to study the symmetry breaking of the sO(3) algebra we use the usual angular momentum Li =
mεijkx

j ẋk which is a constant of motion in absence of gauge field. In fact, no electromagnetic field implies
F ij(x) = εijkBk(x) =

[
ẋi, ẋj

]
= 0, and the expression of the sO(3) Lie algebra with our brackets gives then the

standard algebra with the presence of an electromagnetic field[
xi, Lj

]
= εijkx

k;
[
ẋi, Lj

]
= εijkẋ

k +
q

m
εjklx

kF il(x);
[
Li, Lj

]
= εijkL

k + qεiklε
j
msx

kxmF ls(x).. (2)

In order to restore this sO(3) algebra we introduce a new angular momentumM i(X) which is a priori position
and velocity dependent. We consider then the following transformation law Li(X)→ Li(X) = Li(X) +M i(X),
and we require that this new angular momentum Li verifies the usual sO(3) algebra. We can easily deduce
three constrains for M i(X) : is velocity independent and obeys two following relations

[
ẋi,M j

]
= − 1

m

∂M j(x)

∂xi
= − q

m
εjklx

kF il(x);M i

=
1

2
qεjklx

ixkF jl(x) = −q (x ·B)xi. (3)

which are compatible if the magnetic field B is the Dirac magnetic monopole field B = g
4π

x
‖x‖3 .

The vector M allowing us to restore the sO(3) symmetry is then the Poincar�e momentum [20] M = − qg
4π

x
‖x‖

already found in a previous paper [21] [22]. The total angular momentum is then L = L− qg
4π

x
‖x‖ .

Noncommutative quantum mechanics

From Feynman to noncommutative quantum mechanics

Let now the momentum vector p replace the velocity vector ẋ in the Feynman formalism. Consider a quantum
particle of mass m whose coordinates satisfy the deformed Heisenberg algebra[

xi, xj
]

= i~qθθij(x, p),
[
xi, pj

]
= i~δij ,

[
pi, pj

]
= 0, (4)

where θ is a �eld which is a priori position and momentum dependent and qθ is a charge characterizing
the intensity of the interaction of the particle and the θ �eld. The commutation of the momentum implies
that there is no external magnetic �eld. It is well known that these commutation relations can be obtained
from the deformation of the Poisson algebra of classical observable with a provided Weyl-Wigner-Moyal prod-
uct [23] expanded at the �rst order in θ. In a previous paper [22] we generalized the quantum mechanics
in noncommutative geometry by considering a quantum particle of mass m whose coordinates satisfy the de-
formed Heisenberg algebra

[
xi, xj

]
= i~θij(x,p), [xi, pj ] = i~δij , and [pi, pj ] = 0. From the Jacobi identity

[pi,
[
xj , xk

]
] + [xj , [xk, pi]] + [xk, [pi, xj ]] = 0, we deduced the important property that the θ �eld is only mo-

mentum dependent. Note that instead of this momentum dependent �eld, other authors (see [24] and references
therein) studied gauge theory with a position dependent �eld θ(x) using a Konsevich [25] product which is a gen-
eralization of the Moyal product [23]. An important consequence of the noncommmutativity between the coordi-
nates is that neither the position operator does satisfy the usual law [xi, Lj ] = i~εijkxk, nor the angular momen-
tum satisfy the standard SO(3) algebra [Li, Lj ] = i~εijkLk. Actually we have [xi, Lj ] = i~εijkxk+i~εjklplθik(p),



100

and [Li, Lj ] = i~εijkLk + i~εiklεjmnplpnθkm(p). To remedy this absence of generators of rotations in the non-
commutative geometry we had to introduce a generalized angular momentum J = r ∧ p + λp

p , that satis�es

the SO(3) algebra. The position operator then transforms as a vector under rotations i.e., [xi, Jj ] = i~εijkxk.
The presence of the dual Poincare momentum λp/p leads to a dual Dirac monopole in momentum space for

the position algebra
[
xi, xj

]
= −i~λεijk p

k

p3 . This result immediately implies that the coordinates of spinless

particles are commuting. Another consequence is the quanti�cation of the helicity λ = n~/2 that arises from
the restoration of the translation group of momentum that is broken by the monopole [26].

Link between Berry phase and noncommutative quantum mechanics

Previously we have postulated noncommutativity between the components of the position operator, now we will
show that it can emerge naturally in some systems. To see this consider the Dirac Hamiltonian of a massive
particle submitted to a potential Ĥ = α.p + βm+ V̂ (R) , where V̂ is an operator that acts only on the orbital

degrees of freedom. Using the Foldy-Wouthuysen unitary transformationU(p) =
Ep+mc2+cβα.p√

2Ep(Ep+mc2)
, with Ep =√

p2c2 +m2c4, we get the following transformed HamiltonianU(p)ĤU(p)+ = Epβ + U(p)V̂ (i~∂p)U(p)+.The

kinetic energy is now diagonal whereas the potential term becomes V̂ (D) with the covariant derivative de�ned
by D =i~∂p + A, and with the gauge potential A = i~U(p)∂pU(p)+, which reads

A =
~c
(
ic2p(α.p)β + iβ

(
Ep +mc2

)
Epα−cEp Σ ∧ p

)
2E2

p (Ep +mc2)
, (5)

where Σ = 1⊗σ, is a (4× 4) matrix. We consider now the adiabatic approximation which consists to neglect the
interband transition. We then keep only the bloc diagonal matrix element in the gauge potential and project on
the subspace of positive energy. Then we obtain the Berry connection, the 2× 2 matrix A(p) = i~P(U∂pU

+),
where P is a projector on the positive energy subspace. In this context the θ �eld we postulated in [12] appears
naturally as a consequence of the adiabatic motion of a Dirac particle and corresponds to a non-Abelian gauge
curvature satisfying the relation θij(p, σ) = ∂piA

j−∂pjAi+
[
Ai, Aj

]
. This projection cancels the zitterbewegung

which corresponds to an oscillatory movement around the mean position of the particle that mixes the positive
and negative energies. In this way we obtain a non trivial gauge connection allowing us to de�ne a new

position operator r for this particler =i}∂p + c2}( p∧σ)
2Ep(Ep+mc2) , which is a (2× 2) matrix. For a di�erent work with

operator valued position connected to the spin-degree of freedom see [27]. Zitterbewegung-free noncommutative
coordinates were also introduced for massless particle with rigidity and in the context of anyons [28]. The

commutation relations between the coordinates are then
[
xi, xj

]
= i}θij(p, σ) = −i~2εijk

c4

2E3
p

(
mσk + pk(p.σ)

Ep+mc2

)
.

To generalize the construction of the position operator for a particle with unspeci�ed n/2 (n > 1) spin, we
can use the Bargmann-Wigner equations and obtain

[
xi, xj

]
= i}θij(p,S) = −i~εijk

c4

E3
p

(
mSk +

pk(p.S)

Ep +mc2

)
(6)

For a massless particle we get the relation r =i}∂p + p ∧ S/p2, with the commutation relation giving rise to

the monopole
[
xi, xj

]
= i}θij(p) = −i~εijkλp

k

p3 . It is not surprising that a massless particle has a monopole

Berry curvature as it is well known that the band touching point acts as a monopole in momentum space [5].
This is precisely the case for massless particles for which the positive and negative energy band are degenerate
in p = 0. The monopole appears as a limiting case of a more general non abelian Berry curvature arising from
an adiabatic process of massive spinning particles.

The equation of motion of a particle in a arbitrary potential is then given by

.
r =

p

Ep
− .

p∧θ (7)

with
.
p = −∇V (r) with θi = εijkθjk/2. Term

.
p∧θ is called the anomalous velocity.
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Spin Hall e�ect of light

An exemple of topological spin transport is the ultrarelativistic limit. Experimentally a topological spin trans-
port has been already observed in the case of the photon propagation in an inhomogeneous medium [29], where
the right and left circular polarization propagate along di�erent trajectories in a wave guide (the transvers shift
is observable due to the multiple re�exions), a phenomena interpreted quantum mechanically as arising from
the interaction between the orbital momentum and the spin of the photon [29]. To interpret the experiments
these authors introduced a compicate phenomenological Hamiltonian. Our approach provides a new satisfactory
interpretation as this e�ect also called optical Magnus e�ect is now explained in terms of the non-commutative
property of the position operator that contains the spin-orbit interaction. In this sens, this e�ect is just the
ultra-relativistic spin-Hall e�ect. Note that the adiabaticity criteria has been proved to be valid in [3]. To
illustrate our purpose consider the simple photon Hamiltonian in the inhomogeneous medium H = pc/n(r).

The equations of motion
·
x = 1

i~ [x,H] and
·
p = 1

i~ [p,H] in the semi-classical approximation leads to following

relation between velocity and momentumdxi

dt = c
n

(
pi

p + λεijkpk
p2

∂ lnn
∂xj

)
which containes an unusal contribution

due to the Berry phase. As a consequence the velocity is no more equal to c/n. These last equations are
the same as those introduced phenomenogicaly in [29], but here are deduced rigoursely from di�erent physical
consideration. Similar equations are also given in [10] where the optical Magnus e�ect is also interpreted in
terms of a monopole Berry curvature but in the context of geometrical optic. Our theory is generalizable to the
photon propagation in a non isotrop medium, a situation which is mentioned in [29] but could not be studied
with their phenomenological approach.

Photon in a static gravitational �eld.

We now apply our general approach to the case of a photon propagating in an arbitrary static gravitational �eld,
where g0i = 0 for i = 1, 2, 3, so that ds2 = g00(dx0)2−gijdxidxj = 0. As explained in [31] the photon description
is obtained by considering �rst a Dirac massless particle (massless neutrino) and then by replacing the Pauli
matrices σ by the spin-1 matrices S. Therefore we start with the Dirac Hamiltonian in static gravitational �eld
which can be writtenĤ =

√
g00α.P̃ + ~

4 ε%βγΓ%β0 σγ + i~4 Γ0β
0 αβ with P̃ given by P̃α=hiα(R)(Pi + ~

4 ε%βγΓ%βi σγ)

with hiα the static orthonormal dreibein (α = 1, 2, 3), Γαβi the spin connection components and εαβγσ
γ =

i
8 (γαγβ − γβγα). The coordinate operator is again given by R =i~∂p. Note that here we consider the general
case where an arbitrary static torsion of space is allowed. It is known [32] that for a static gravitational
�eld (which is the case considered here), the Hamiltonian Ĥ is Hermitian. We now want to diagonalize Ĥ
through a unitary transformation U(P̃). Because the components of P̃ depend both on operators P and R the
diagonalization at order ~ is performed by adapting the method detailed above to block-diagonal Hamiltonians.
To do so, we �rst write Ĥ in a symmetrical way in P and R at �rst order in ~. This is easily achieved using the
Hermiticity of the Hamiltonian which yieldsĤ = 1

2

(√
g00α.P̃ + P̃

+
.α
√
g00

)
+ ~

4 ε%βγΓ%β0 σγ . Finally we arrive at

the following expression for the diagonal positive (we have projected on the positive energy subspace) energy

representation ε̃ : ε̃ = ε + λ
4

p.Γ0

p + ~B.σ
2ε −

(AR×p).B
ε(r)

. where we have introduced a �eld Bγ = − 1
2PδT

αβδεαβγ

, with Tαβδ = hδk
(
hlα∂lh

kβ − hlβ∂lhkα
)

+ hlαΓβδl − hlβΓαδl the usual torsion for a static metric (where only
space indices in the summations give non zero contributions). We have also de�ned the last equation ε =

c

√(
pi + λ

4
Γi(r).p

p

)
gijg00

(
pj + λ

4
Γj(r).p

p

)
, with the γ-th component of the vector Γi as Γi,γ = ε%βγΓ%βi (r) and

the helicity λ = ~p.σ
p . Note that the dynamical operators are no r = R+~c2 P×Σ

2ε2 and p = P−~c2(P×Σ
2ε2 )∇RP̃.

Interestingly, this semi-classical Hamiltonian presents formally the same form as the one of a Dirac particle in
a true external magnetic �eld ( [14], [33]). The term B.σ is responsible for the Stern-Gerlach e�ect, and the
operator L = (AR×p) is the intrinsic angular momentum of semiclassical particles. The same contribution
appears also in the context of the semiclassical behavior of Bloch electrons (spinless) in an external magnetic
�eld ( [35], [36]) where it corresponds to a magnetization term. Because of this analogy and since Tαβδ is
directly related to the torsion of space through Tαβδ = hδkh

iαhjβT kij we call B a magnetotorsion �eld.
However, this form for the energy presents the default to involve the spin rather than the helicity. Actually

one can use the property λp/2p = ~σ/2− (AR×p) to rewrite the energy as ε̃ ' ε+ λ
4

p.Γ0

p + λg00
2ε

B.p
p .This semi-

classical Hamiltonian contains, in addition to the energy term ε, new contributions due to the Berry connections.
Indeed, we can see also that the helicity couples to the gravitational �eld through the magnetotorsion �eld B
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which is non-zero for a space with torsion. As a consequence, a hypothetical torsion of space may be revealed
through the presence of this coupling. Note that, in agrement with [37], this Hamiltonian does not contain the
spin-gravity coupling term Σ.∇g00 predicted in [38].

We can also deduce the new (non-canonical) commutations rules
[
ri, rj

]
= i~Θij

rr;
[
pi, pj

]
= i~Θij

pp;
[
pi, rj

]
=

−i~gij+i~Θij
pr, where Θij

ζη = ∂ζiAηj−∂ηiAζj +[Aζi,Aηj ] where ζ, η.mean either r or p. An explicit computation
shows that at leading order

Θij
rr = −~c4 (Σ.p) pγ

2ε4
εαβγhiαh

j
β ; Θij

pp = −~c4 (Σ.p) pγ
2ε4

∇ripα∇rjpβεαβγ ; (8)

Θij
pr = ~c4

(Σ.p) pγ
2ε4

∇ripαh
j
βε
αβγ (9)

From the additional commutation relations between the helicity and the dynamical operators [ri, λ] = [pi, λ] = 0
we deduce the semiclassical equations of motion ṙ = (1−Θpr)∇pε̃ + ṗ×Θrr and ṗ = − (1−Θpr)∇rε̃ + ṙ ×
Θpp.To complete the dynamical description of the photon notice that at the leading order the helicity λ is not
changed by the unitary transformation which diagonalizes the Hamiltonian so that it can be written λ = ~p.Σ/p.

After a short computation one can check that the helicity is always conserved d
dt

(
~p.Σ
p

)
= 0 for an arbitrary

static gravitational �eld independently of the existence of a torsion of space.
These motion equations are the new semiclassical equations of motion for a photon in a static gravitational

�eld. They describe the ray trajectory of light in the �rst approximation of geometrical optics (GO). (In
GO it is common to work with dimensionless momentum operator p =k−1

0 k with k0 = ω/c instead of the
momentum [34]). For zero Berry curvatures we obtain the well known zero order approximation of GO and
photons follow the null geodesic. The velocity equation contains the by now well known anomalous contribution
ṗ×Θrr which is at the origin of the intrinsic spin Hall e�ect (or Magnus e�ect) of the photon in an isotropic
inhomogeneous medium of refractive index n(r) ( [12], [34], [39], [40]). Indeed, this term causes an additional
displacement of photons of distinct helicity in opposite directions orthogonally to the ray. Consequently, we
predict gravitational birefringence since photons with distinct helicities follow di�erent geodesics. In comparison
to the usual velocity ṙ = ∇pε̃ ∼ c, the anomalous velocity term v⊥ is obviously small, its order vi⊥ ∼ cλ̃∇rjgij

being proportional to the wave length λ̃.
The momentum equation presents the dual expression ṙ × Θpp of the anomalous velocity which is a kind

of Lorentz force which being of order ~ does not in�uence the velocity equation at order ~. Note that similar
equations of motion with dual contributions ṗ×Θrr and ṙ×Θpp were predicted for the semiclassical dynamics
of spinless electrons in crystals subject to small perturbations ( [36], [35]).

Symmetric gravitational �eld

As a simple application, consider the symmetric case g00g
ij = δijF 2(R). A typical example of such a metric is

the Schwarzschild space-time in isotropic coordinates. For a symmetric metric one has B.p = Γ0 = 0 and the
semiclassical energy reduces to ε̃ = c(pF (r) + F (r)p)/2 with the dynamical variables r = R + ~P×Σ

P 2 , p = P,
and the following commutation relations [ri, rj ] = i~Θij

rr = −i~λεijkpk/p3, [pi, pj ] = 0, [ri, pj ] = i~gij . As a
consequence, we derive the following equations of motion ṙ = ∇pε̃+ ṗ×Θrr and ṗ = −∇rε̃. In the symmetric
case the equations of motion become simpler than in the general case, but the gravitational birefringence is
still present. These equations were already postulated (but not derived) in [?] to explain the Magnus e�ect
(the di�erent deviation of light of distinct polarization in an inhomogeneous medium of refractive index n(r))
observed despite its smallness in inhomogeneous isotropic optical �bers [?] and also discussed theoretically in
less general contexts and with di�erent approaches in several other papers ( [34], [39], [40]). This case �ts within
our formalism since a gravitational �eld can be seen as an isotropic medium related to the metric through the
relation gij = δijn−1(r). Therefore the gravitational birefringence predicted here is simply due to the Magnus
e�ect as a consequence of the photon spin-orbit interaction. In particular this e�ect does not need a coupling
between the electromagnetic �eld and a torsion term as proposed in [41].

We now apply the equations of motion to compute the de�ection of polarized light by a star's gravitational
�eld. A polarization independent result is expected by the Einstein's theory of gravitation which does not
consider the anomalous velocity. With the Schwarzschild metric one has F (R) = 1 − 2GM

R [38] and for the

equations of motion we get ṙ = p
pF + λ 2GM

r3
r×p
p2 and

·
p = −2GM r

r3 p.
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Conclusion

Some recent applications of semiclassical methods to several branches of physics have shown the relevance
of Berry phases contributions to the dynamics of a quantum system. In such a context, the coordinates
and momenta algebra are no longer commutative, and the dynamical equations for these variables directly
include the in�uence of Berry phases through the parameters of noncommutativity (Berry curvatures). The
noncommutativity of the coordinate is responsible of the topological spin transport of spinning particle similarly
to the spin Hall e�ect in spintronic physics or the optical Magnus e�ect in optics. We discussed the e�ect of
the Berry phase on the propagation of light in a gravitational �eld. We found two new semiclassical equations
motion predicting that the photon does not follow the null geodesic due to its spinning nature. The reason is
an anomalous velocity, responsible for the gravitational birefringence. This last result is in agreement with the
modern point of view about the spinning particles evolution. Our results are not restricted to the gravitational
�eld but also apply to systems with anisotropic refractive indices. Currently very interesting works are carried
out especially in the direction of the spin Hall e�ect of light [?] and of the study of a Dirac particle in a
gravitational �eld [43].
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Abstract: Constructive analysis of quantum concepts leads to the conclusion that quantum behavior is
a natural consequence of the fundamental impossibility to trace identity of indistinguishable objects in
their evolution. General mathematical arguments imply that any quantum dynamics can be reduced to a
sequence of permutations. Quantum phenomena, such as interferences, arise in invariant subspaces of
permutation representations of the symmetry group of a system. Observable quantities can be expressed
in terms of the permutation invariants. We demonstrate that for description of quantum phenomena
it is su�cient to employ the cyclotomic numbers � a constructive equivalent (dense subset) of complex
numbers.
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Introduction

Physics is an empirical science. Since the time of Newton, theories that describe empirical phenomena contain
various actual in�nities, the most typical of which is continuum. These mathematical constructs are not scienti�c
in the sense of Karl Popper: their presence in reality can neither be veri�ed nor falsi�ed by any rational means.
The notion of continuum lies in the base of the di�erential calculus. The empirical content of the concept of a
derivative is the hypothesis that changes in physical data for small changes of coordinates in which the data are
speci�ed, can be approximated by linear relations. This hypothesis leads to signi�cant simpli�cations. In fact,
almost all contemporary physical theories involve derivatives. However, approximations of this kind may lead
to substantial descriptional losses. To illustrate this, let us consider the notion of a group � the most important
(because groups represent coordinate changes which are bijective mappings, i.e. data rewritings without loss
of information) mathematical concept in physics. Table 1 contains lists of simple continuous and �nite groups.
The left part of the table has been �lled by two people (W. Killing and �E. Cartan) in about 5 years, whereas the

Lie groups Finite groups
4 in�nite series 16+1+1 in�nite series
An, Bn, Cn, Dn. Group of Lie type
5 exceptionals An(q), Bn(q), Cn(q), Dn(q), E6(q), E7(q), E8(q),
E6, E7, E8, F4, G2. F4(q), G2(q),2An

(
q2
)
,2Dn

(
q2
)
,2E6

(
q2
)
,3D4

(
q3
)
,

2Bn
(
22n+1

)
, 2F4

(
22n+1

)
, 2G2

(
32n+1

)
.

Cyclic groups of prime order Zp.
Alternating groups An, n ≥ 5.
26 sporadic groups
20 subquotients of the Monster M
M11,M12,M22,M23,M24, J2, Co1, Co2, Co3,
Fi22, F i23, F i24, HS, McL, He, Suz, HN , Th,
B, M .
6 pariahs
J1, J3, J4, Ru, O

′N , Ly.

Table 1: Comparison of classi�cations of simple groups.

right part has been completed by about a hundred people for more than 170 years [1]. All groups from the left
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have direct analogs among the groups from the right but not vice versa. That is, any Lie group has empirically
indistinguishable counterparts (groups of Lie type) among the �nite groups, but there are �nite groups which
can not be approximated by Lie groups. Besides the superiority of discrete mathematics over continuos in the
expressive power, the �nite description has obvious pragmatic bene�ts: absence of unnecessary entities allows
us to focus on the essentials of physical problems; �niteness of description is an absolute necessity for the very
possibility of computer modeling of physical systems.

Construction of number systems

Traditionally, the number systems used in applications are constructed as follows. The most fundamental
primordial entities are counters, i.e. natural numbers N = {0, 1, 2, . . .}. Then integer numbers Z are constructed
as equivalence classes of pairs of naturals: the equivalence (n,m) ∼ (n′,m′) ∈ Z is de�ned via the relation
n + m′ = n′ + m, where n,m, n′,m′ ∈ N. This is known as the group completion (or the Grothendieck group)
of the abelian monoid (N,+, 0). Generally, an abelian monoid (A,op, id) is a set A with a commutative binary
operation op and an identity element id. The rational numbers Q are obtained as the fraction �eld of the ring
Z in a similar way. Namely, Q \ {0} is the group completion of the abelian monoid (Z \ {0} ,×, 1).

There are constructive and nonconstructive ways to add new elements to the rational numbers. Continuous
mathematics is based on nonconstructive metric completions of the �eld Q. By the Ostrowski theorem there
are only two types of such completions:

� Real numbers R are (in�nite) sequences of rationals converging in the metric |xn − xm|. Rational
approximations constitute a constructive core of the notion of real number. Rounding errors in these
approximations increase in long calculations.

� p-adic numbers Qp are sequences of rationals converging in the metric

|xn − xm|p =
∣∣∣pv a

b

∣∣∣
p
≡ p−v,

i.e., rationals xn and xm are close if they have large prime power as a common factor. Here constructive
core is also rational approximations, but rounding errors do not increase because the p-adic approximations
are ring homomorphisms.

In the constructive paradigm, a natural way of adding new elements to the rational numbers is an algebraic
extension Q(α) = Q [x]/〈F (x)〉, where α is a root of an irreducible polynomial F (x). The concept of algebraic
extension is quite enough for obtaining all types of number systems used in applications. For example, the
complex �eld C � the main number system in quantum mechanics � is nonconstructive completion of some
algebraic extensions, e.g., Q(i) = Q [x]/

〈
x2 + 1

〉
.

In order to avoid as far as possible the occurrence of scienti�c artifacts, it is important to adhere to the
Occam principle. Most economical and adequate for physics approach to introduce number systems is based on
two primordial concepts

� Natural numbers N = {0, 1, 2, . . .}. They realize the idea of counting.

� Roots of unity, i.e., abstract solutions of the cyclotomic equation rC = 1, where C is a natural number
called the conductor. Root of unity is an algebraic incarnation of the idea of cyclicity (periodicity).

From these two concepts we obtain the following constructive derivates

� The semiring of cyclotomic naturals NC , which is the set of all linear combinations of roots of unity
with natural coe�cients. Linear combinations of roots of unity with integer coe�cients form the ring of
cyclotomic integers ZC . The standard properties of roots of unity imply that ZC = NC if C ≥ 2.

� The cyclotomic �eld QC is the fraction �eld of the ring ZC .

A Cth root of unity r is called primitive if its minimal non-trivial period is equal to C. Any root of unity can be
represented as a power of a primitive root. All Cth primitive roots of unity are roots of the unique irreducible
divisor ΦC(r) of the polynomial r

C − 1. ΦC(r) is called the Cth cyclotomic polynomial. In terms of ΦC(r) the
cyclotomic �eld can be represented as the algebraic extension QC = Q [r]/〈ΦC(r)〉.
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Cyclotomic �elds are only a special case of algebraic extensions. However they are very important for
the constructive formulation of quantum mechanics, since all eigenvalues of linear representations of a �nite
group are roots of unity. This follows from the fact that any linear representation is subrepresentation of some
permutation representation, and � using the decomposition of a permutation into disjoint cycles � one can
easily show that the characteristic polynomial of the matrix P of a permutation of N things has the form

χP (r) = det (P− rI) = (r − 1)
k1
(
r2 − 1

)k2 · · · (rN − 1
)kN

,

where ki is the number of cycles of length i in the permutation.

The complex �eld C is nonconstructive derivate of natural numbers and roots of unity. It is a metric
completion of any cyclotomic �eld QC with C ≥ 3.

Constructive view of Feynman path integral

According to Feynman's approach amplitude of a quantum transition from one state to another is calculated
by summing the amplitudes along all possible classical paths connecting these states. Amplitude along an
individual path is evaluated as a product of the amplitudes of transitions between the nearest successive states
on the path. Namely, the amplitude along a path is represented as the exponential of the action along that path

AU(1) = A0 exp (iS) = A0 exp

i T∫
0

Ldt

 .

The function L depending on the �rst time derivatives of states is called the Lagrangian. In the discrete time the
exponential of the integral turns into the product: exp

(
i
∫
Ldt
)
→ eiL0,1 . . . eiLt−1,t . . . eiLT−1,T and expression

for the amplitude takes the form

AU(1) = A0eiL0,1 . . . eiLt−1,t . . . eiLT−1,T .

We observe that factors µt−1,t = eiLt−1,t of this product are elements of the connection with values in one-
dimensional unitary representation U(1) of a circle, i.e. the commutative Lie group Γ = S1 ≡ R/Z.

A natural generalization of this observation is to assume that the group Γ is not necessarily a circle and
that its unitary representation ρ(Γ) is not necessarily one-dimensional. In this case, the amplitude is a multi-
component vector. The value of such a multicomponent amplitude on a path takes the form

Aρ(Γ) = ρ(αT,T−1) . . . ρ(αt,t−1) . . . ρ(α1,0)A0, αt,t−1 ∈ Γ. (1)

The Feynman rules, formulated in the abstract form, coincide in fact with the rules of matrix multiplication.
It is clear from the illustration on which the two-step evolution of a quantum system with two states is presented
in parallel in the Feynman and matrix forms:

φ2 ψ22 2 2

φ1 ψ11 1 1
a11

a22

a1
2

a
21

b1
2

b
21

b11

b22

∼

φ2 ψ22 2

φ1 ψ11 1
u11

u22

u1
2

u
21

m m

BA =

(
b11a11 + b12a21 b11a12 + b12a22

b21a11 + b22a21 b21a12 + b22a22

)
∼ U =

(
u11 u12

u21 u22

)
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Following the Feynman rules, the transition from, say, the state φ2 to the state ψ1 is given by the sum along
two paths: b11a12 + b12a22. But just the same expression is the element u12 of the product of matrices U = BA.
The general case of arbitrary number of states and arbitrary number of time steps is easily derived from this
elementary example by mathematical induction on these numbers.

In the case of non-commutative connection, formula (1) corresponds to a non-Abelian gauge theory. The
above argument about the correspondence between the Feynman quantization and matrix multiplication is
applicable here as well. We only need to treat the evolution matrices A,B and U as block matrices with
noncommuting entries, which are matrices from the representation ρ(Γ).

Paths in the Feynman approach can run over abstract states. Most commonly it is assumed that the paths
run over space points. In what follows we will consider the problem of quantum behavior ignoring possible
presence of a space in the structure of a complete set of states. We will assume that quantum evolution is
determined by unitary matrices in a Hilbert space of the complete system. The possible space structure can be
described in terms of tensor decompositions of the �large� Hilbert space.

Constructive core of quantum mechanics

In traditional matrix formulation quantum evolutions are described by unitary operators in a Hilbert space H.
Evolution operators U belong to a unitary representation of the continuous group Aut(H) of automorphisms of
H. To make the problem constructive we should replace the group Aut(H) by some �nite group G which would
be empirically equivalent to Aut(H).

The theory of quantum computing [2] proves the existence of �nite sets of universal quantum gates that
can be combined into unitary matrices which approximate to arbitrary precision any unitary operator. In other
words, there exists a �nitely generated (countable) group GFG which is a dense subgroup of the continuous group
Aut(H).

A group G is called residually �nite [3], if for every g ∈ G, g 6= 1, there exists a homomorphism φ from G
onto a �nite group H, such that φ (g) 6= 1. This means that any relation between the elements of G can be
modeled by a relation between the elements of a �nite group. Here we have an analogy with the widely used in
physics trick, when the in�nite space is replaced by, for example, a torus whose size is su�cient to hold the data
related to a particular problem. In fact, all constructive in�nite groups used in physics � a typical example is
the famous braid group � are residually �nite.

According to the theorem of A.I. Mal'cev [4], every �nitely generated group of matrices over any �eld is
residually �nite. Thus we have the following sequence of transitions from the continuous to a

�nite group: Aut(H)
approximation−−−−−−−−−→ GFG

homomorphism−−−−−−−−−−→ G .

As is well known, any linear representation of a �nite group is unitary. Any representation of a �nite group
is a subrepresentation of some permutation representation. Let U be a representation of G in a K-dimensional
Hilbert space HK. Then U can be embedded into a permutation representation P of G in an N-dimensional
Hilbert space HN, where N ≥ K. The representation P is equivalent to an action of G on a set of things
Ω = {ω1, . . . , ωN} by permutations. In the proper case N > K, the embedding has the structure

T−1PT =

 1

V

}
HN−K

U}HK

 , HN = HN−K ⊕HK,

where 1 is the trivial one-dimensional representation, mandatory for any permutation representation; V is a
subrepresentation, which may be missing. T is a matrix of transition from the basis of the representation P to
the basis in which the permutation space HN is split into the invariant subspaces HN−K and HK. For brevity,
we will refer to this basis as �quantum basis�. The data in the spaces HK and HN−K are independent since both
spaces are invariant subspaces of HN. So we can consider the data in HN−K as �hidden parameters� with respect
to the data in HK.

A trivial approach would be to set arbitrary (e.g., zero) data in the complementary subspace HN−K. This
approach is not interesting since it is not falsi�able by means of standard quantum mechanics. In fact, it leads
to standard quantum mechanics modulo the empirically unobservable distinction between the ��nite� and the
�in�nite�. The only di�erence is technical: we can replace the linear algebra in the K-dimensional space HK by
permutations of N things.
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A more promising approach requires some changes in the concept of quantum amplitudes. We assume [5�7]
that quantum amplitudes are projections onto invariant subspaces of vectors of multiplicities (�occupation
numbers�) of elements of the set Ω on which the group G acts by permutations. The vectors of multiplicities

|n〉 =

n1

...
nN

 are elements of the module HN = NN, where N is the semiring of natural numbers. Initially we

deal with the natural permutation representation of G in the module HN. Using the fact that any element of
a �nite group has �nite order we can turn the module HN into the Hilbert space HN. It is su�cient just to
add Cth roots of unity to the natural numbers to form the semiring NC . The conductor C depends on the
structure of the group G. As the conductor we can always take the exponent of G, which is de�ned as the least
common multiple of the orders of elements of G. However, in many cases it is su�cient to take some nontrivial
divisor of the exponent. We will always assume that C ≥ 2. In this case the semiring NC becames a ring of
cyclotomic integers. To complete the conversion of the module HN into the Hilbert space HN, we introduce the
cyclotomic �eld QC as a �eld of fractions of the ring NC . If C ≥ 3, then QC is a dense sub�eld of the �eld of
complex numbers C. In fact, algebraic properties of elements of QC are quite su�cient for all our purposes �
for example, complex conjugation corresponds to the transformation rk → rC−k for roots of unity � so we can
forget the possibility to embed QC into C (as well as the very existence of the �eld C).

The connection between mathematical description and observation is provided by the Born rule: the prob-
ability to register a particle described by the amplitude |ψ〉 by an apparatus con�gured for the amplitude |φ〉
is

P(φ, ψ) =
|〈φ | ψ〉|2

〈φ | φ〉 〈ψ | ψ〉
.

In the ��nite� background the only reasonable interpretation of probability is the frequency interpretation: the
probability is the ratio of the number of �favorable� combinations to the total number of combinations. So we
expect that P(φ, ψ) must be a rational number if everything is arranged correctly.

Thus, in our approach the usual non-constructive contraposition � complex numbers as intermediate values
against real numbers as observables � is replaced by the constructive one � irrationalities against rationals.
From the constructive point of view, there is no fundamental di�erence between irrationalities and (constructive)
complex numbers: both are elements of algebraic extensions.

Quantum behavior in invariant subspaces of permutation representation. Illustra-
tion by A5 acting on icosahedron

The alternating group A5 is the smallest simple noncommutative group. It consists of 60 elements and its
exponent is 30. Note that A5 has a �physical incarnation�: the fullerene C60 molecule has the structure of a
Cayley graph of the group (see Fig. 1). This is clear from the following presentation of A5 by two generators
with three relators:

A5
∼=
〈
a, b | a5, b2, (ab)

3
〉
. (2)

A5 has �ve irreducible representations: the trivial 1 and four faithful 3,3′,4,5; and three primitive permutation
representations having the following decompositions into the irreducible components: 5 ∼= 1 ⊕ 4, 6 ∼= 1 ⊕
5, 10 ∼= 1 ⊕ 4 ⊕ 5. Recall that a transitive action of a group on a set is called primitive [8], if there is no
non-trivial partition of the set, invariant under the action of the group.

Consider the action of A5 on the vertices Ω12 of an icosahedron. This action is transitive, but imprimitive
with the non-trivial partition into the following blocks

{| B1 | · · · | Bi | · · · | B6 |} ≡ {| 1, 7 | · · · | i, i+ 6 | · · · | 6, 12 |} ,

assuming the vertex numbering shown in Fig. 2. Each block Bi consists of a pair of opposite vertices of
the icosahedron. Permutation representation of the action of A5 on the icosahedron vertices has the following
decomposition into irreducible components

12 ∼= 1⊕ 3⊕ 3′ ⊕ 5 or T−1 (12) T = 1⊕ 3⊕ 3′ ⊕ 5, (3)
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Figure 1: Cayley graph of A5. Pentagons, hexagons and links between adjacent pentagons correspond to the
relators a5, (ab)

3
and b2 in presentation (2).

1

5

11

7

6

10

4

12

9

2

8

3

Figure 2: Icosahedron. Invariant blocks are pairs of opposite vertices.

where T is a matrix of transition from the �permutation� to �quantum� basis.

Actually there is no necessity to compute transformation matrices like T in (3) explicitly. There is a way [6]
to express invariant scalar products in invariant subspaces in terms of easily computable matrices of orbitals,
i.e., orbits of the action of G on the Cartesian product Ω× Ω (see e.g. [9, 10]).

In the case of action of A5 on the set of icosahedron vertices Ω12, the matrices of orbitals have the form

A1 = I12, A2 =

(
0 I6

I6 0

)
, A3 =

(
X Y
Y X

)
, A4 =

(
Y X
X Y

)
, (4)

where In is n×n identity matrix, X =


· 1 1 1 1 1
1 · 1 · · 1
1 1 · 1 · ·
1 · 1 · 1 ·
1 · · 1 · 1
1 1 · · 1 ·

 , Y =


· · · · · ·
· · · 1 1 ·
· · · · 1 1
1 · · · · 1
1 1 · · · ·
· 1 1 · · ·

 . In terms of matrices

(4) the invariant bilinear forms corresponding to decomposition (3) take the form

B1 =
1

12
(A1 +A2 +A3 +A4) ,

B3 =
1

4

(
A1 −A2 −

1 + 2r2 + 2r3

5
A3 +

1 + 2r2 + 2r3

5
A4

)
,
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B3′ =
1

4

(
A1 −A2 +

1 + 2r2 + 2r3

5
A3 −

1 + 2r2 + 2r3

5
A4

)
,

B5 =
5

12

(
A1 +A2 −

1

5
A3 −

1

5
A4

)
,

where r is a 5th primitive root of unity. Note, that the cyclotomic integer 1 + 2r2 + 2r3 is equal to −
√

5 � in
fact, square root of any integer is a cyclotomic integer.

Now let us consider the scalar products of projections of �natural� vectors. If projections of vectors with
natural components m = (m1, . . . ,m12)

T
and n = (n1, . . . , n12)

T
onto the invariant subspaces corresponding to

α = 1,3,3′,5 are Φα and Ψα, respectively, then 〈Φα |Ψα〉 = 〈m |Bα|n〉. That is, we have

〈Φ1 | Ψ1〉 =

1

12

(
〈m |A1|n〉+ 〈m |A2|n〉+ 〈m |A3|n〉+ 〈m |A4|n〉

)
, (5)

〈Φ3 | Ψ3〉 =

1

4

(
〈m |A1|n〉 − 〈m |A2|n〉+

√
5

5

(
〈m |A3|n〉 − 〈m |A4|n〉

))
, (6)

〈Φ3′ | Ψ3′〉 =

1

4

(
〈m |A1|n〉 − 〈m |A2|n〉 −

√
5

5

(
〈m |A3|n〉+ 〈m |A4|n〉

))
, (7)

〈Φ5 | Ψ5〉 =

5

12

(
〈m |A1|n〉+ 〈m |A2|n〉 −

1

5

(
〈m |A3|n〉+ 〈m |A4|n〉

))
. (8)

Let us give some remarks on these expressions:

� Scalar product (5) can be written as

〈Φ1 | Ψ1〉 =
1

12
(m1 +m2 + · · ·+m12) (n1 + n2 + · · ·+ n12) .

In fact, generally, the trivial one-dimensional subrepresentation, contained in any permutation represen-
tation, can be interpreted as the �counter of particles�, since the linear permutation invariant

∑N
i=1 ni

corresponding to this subrepresentation is the total number of elements of the set Ω in the ensemble.

� Expressions (6), (7) and (8) can take zero values on non-zero vectors with natural components. Thus we
can observe a non-trivial �quantum behavior� � destructive interference � in the corresponding invariant
subspaces.

� The Born probabilities for subrepresentations 3 and 3′ contain irrationalities that contradicts the frequency
interpretation of probability for �nite sets. Obviously, this is a consequence of the imprimitivity: one
can not move an icosahedron vertex without simultaneous movement of its opposite. To resolve the
contradiction, mutually conjugate subrepresentations 3 and 3′ must be considered together. The scalar
product

〈Φ3⊕3′ | Ψ3⊕3′〉 =
1

2

(
〈m |A1|n〉 − 〈m |A2|n〉

)
in the six-dimensional subrepresentation 3 ⊕ 3′ always gives rational Born's probabilities for vectors of
natural �occupation numbers�.
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Conclusions

The universality of quantum mechanics, i.e., its applicability to physical objects of very di�erent nature in a
wide range of scales, suggests that a simple a priori mathematical scheme may lie in its basis. The fact that
quantum behavior is demonstrated only by systems containing indistinguishable particles � any deviation from
the exact identity of particles destroys quantum interferences � suggests that here the basic mathematical
principle is symmetry. (Indistinguishability of objects means their belonging to the same orbit of the relevant
symmetry group.) From this point of view, the quantum behavior is explained by the fundamental impossibility
to trace individual objects in the process of evolution of ensembles of indistinguishable objects. The only, that
is available from observations, is information about invariant combinations of such objects.

Our approach is based on the idea that any problem that has a meaningful empirical content, can be
formulated in constructive, more de�nitely, �nite terms.

Using general mathematical arguments we show that any quantum problem can be reduced to permutations.
Quantum interferences are phenomena observed in invariant subspaces of permutation representations and
expressed in terms of permutation invariants. If we assume also that the entities, which are subject to the
permutations, have a physical meaning and that quantum amplitudes are vectors of multiplicities (which are
natural numbers) of these entities in ensembles, we come to a very simple and self-consistent picture of the
quantum behavior. The idea of natural quantum amplitudes looks very attractive. In particular, it allows to
�deduce� the complex numbers which are postulated in standard quantum mechanics. If the idea is correct, then
the quantum phenomena in di�erent invariant subspaces are di�erent manifestations � visible in appropriate
�observational setups� � of a single process of permutations of the same collection of objects.
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Introduction

Consider an extended mechanical system comprising N particles with di�erent masses, where N may tend to
in�nity. As a reference body, let us consider the center of mass of the mechanical system that can be associated
with an inertial reference frame with the center of mass de�ned by the rule

X =
∫ +∞
−∞ x(t)ρ(x,t)dxdt∫ +∞
−∞ ρ(x,t)dxdt

=
∫ +∞
−∞ ψ∗(x,t)x(t)ψ(x,t)dxdt∫ +∞
−∞ ψ∗(x,t)ψ(x,t)dxdt

,

ψ being the auxiliary function yielding squared the density of matter distribution ρ(x, t). The test body (the
observer), being a part of the extended system with chaotically moving components, is also observed moving
chaotically. If the test body (the observer) is associated with the reference frame, the latter frame is a vibrating
(i.e. non-inertial) one. Let us call the latter one a local non-inertial reference frame.

If we consider the trajectory of the test body as a smooth function possessing not only the �rst and the
second time derivatives but as well the higher ones, then the transformation of any coordinate of the inertial
reference frame associated with the center of mass of the mechanical system into a locally non-inertial reference
frame shall be expresses as a converging Taylor series

X = x0 +
·
xt+ 1

2

··
xt2 + 1

3!

···
xt3 + ...+ 1

k!

·
x

(k)
tk + ...

Attempts to complement quantum mechanics with certain hidden variables, aimed at an opportunity to infer
it from the classical mechanics, have been undertaken beginning from the �rst years of quantum mechanics.

Today those attempts look rather strange. In fact, in order to describe a mechanical system, the classical
mechanics uses the �nite number of spatial coordinates and their �rst and second order time derivatives, i.e.
velocity and acceleration. Contrary to the classical mechanics, quantum mechanics may make use of in�nite
number of variables of the Hilbert space. Therefore introduction of additional hidden variables into the quantum
mechanics seems unnecessary. Instead, it is reasonable to complement the classical mechanics with the in�nite-
dimensional space of higher-order derivatives of the spatial coordinates in order to integrate the classical and
quantum mechanics into a uni�ed theory with the common basis.

Why the Newton's second law is a second order di�erential equation?

The classical description of the physical reality contains an incomparably fewer number of variables than the
quantum one. This invites the question: "How the classical description can be complemented?" While a
possibility of augmenting the quantum mechanical description with additional ("hidden") variables has been
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debated for long, the question as to how to complement the classical description to make it compatible with
the quantum mechanical one has not received due attention.

Aristotelian physics assumed the velocity to be proportional to the applied force; hence the body dynamics
shall be described by a �rst-order derivative di�erential equation. The Classical Physics in the inertial frames of
reference postulates that a body not subject to any interactions maintains a constant velocity of the translational
motion. Under these conditions, the body dynamics is described by a second-order di�erential equation, with
acceleration being proportional to the force; this pertains to frames of reference called inertial ones. In this
axiomatic, the dynamics of the body is described by a second-order di�erential equation with the acceleration
being proportional to the force.

Let us consider the case of high-order di�erential equations.
Classical dynamics of test particle motion with higher-order time derivatives q̇(n) of coordinates q was �rst

described in 1850 by
M.Ostrogradsky [1] and is known as High-Order Derivative Ostrogradsky's Formalism. Being a mathematician,
M. Ostrogradsky considered coordinate systems rather than frames of reference. This is just the case corre-
sponding to a real reference frame comprising both inertial and non-inertial reference frames. In a general case,
the Lagrangian takes on the form (n→∞)

L = L(q, q̇, q̈, ..., q̇(n)). (1)

Considering the dynamics of a body with an observer in a real reference frame, and varying the action
function, we obtain the equation:

δS = δ

∫
L(q, q̇, q̈, ..., q̇(n))dt =

∫ N∑
n=0

(−1)n
dn

dtn
∂L

∂q̇(n)
δq̇(n)dt = 0. (2)

Applying the least action principle, we obtain Euler-Lagrange equation for the Extended Mechanics:

N∑
n=0

(−1)n
dn

dtn
∂L

∂q̇(n)
= 0, (3)

or

∂L

∂q
− d

dt

∂L

∂q̇
+
d2

dt2
∂L

∂q̈
− ...+ (−1)N

dN

dtN
∂L

∂q̇(N)
= 0. (4)

Basic Postulates

Kinematic postulate
A free body maintains the same order of its coordinate time derivatives as the constant derivative involved

in the transformation of the observer's reference frame to the relative of the inertial reference frame.
How could this classical/quantum description of the physical reality be extended with non-local inertial

characteristics of vibrating reference frames? Is it better to complement the classical mechanics for better
compatibility with the quantum mechanics than to do this with the quantum mechanics?

Dynamic postulate
The extended law of dynamics in real frame of references including the case of the vibration non-inertial

frame

F = k0q + k1
·
q + k2

··
q + k3

···
q + ...+ kn

·
q

(n)
+ ...

When the classical mechanics is complemented with vibrating reference frames, a free particle turns into a
randomly oscillating one with higher-order time derivatives of coordinates. Random oscillations of the observer's
reference frame means a possibility of interference e�ects.
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The classical/quantum constructions of Hybrid theory [2-6] as Neoclassical Physica could be based on the
following common additional assumptions:

1. Any frame of reference is subject to random external in�uences. Hence, every reference frame is individual,
and a transition from one reference frame to another may lead to a sudden change. The concept of the inertial
frame in the classical mechanics is only valid on the average and, therefore, the Galilean relativity is an averaged
concept as well. Hence, for any particle there exist several paths corresponding to di�erent reference frames;
the Heisenberg uncertainty can be interpreted as a consequence of the nonexistence of ideal inertial frames; and
the Ehrenfest theorem can be considered a consequence of inertial frame being an averaged concept. Therefore,
a free body preserves the same orders of its time derivatives as constant kinematic characteristics of the class
of frame of references, e.g. in a uniformly accelerating reference frame a free body preserves its acceleration.

2. The Ehrenfest equations for the Quantum Mechanics observables are de�ned in coordinate averages.
Compare the averaging procedure of this paper with the time averaging. Within the above framework, should
the ideal inertial frames be non-existent, we could consider the averaging of the classical equations of motion
over the time interval ∆t:

−∂U∂q = d
dt

[p(t+∆t)+p(t−∆t)]
2 .

Using the Taylor expansion

p(t±∆t) = p(t)± ·p∆t+ 1
2!

··
p(t)∆t2 + ...+ (−1)n

n!

·
p

(n)
(t)∆tn + ..

the function F = −∂U∂q can be expanded as follows:

F (q.
·
q,
··
q,
···
q ...,

·
q

(k)
) =

·
p(t) + 1

2!

·
p

(3)
(t)∆t2 + 1

4!

·
p

(5)
(t)∆t4 + ...,

where
·
p

(n)
denotes n-th time derivative of momentum p. It is the Extended Law of Dynamics in a reality

frame including the case of a vibrating non-inertial reference frame. Correspondingly, a free body preserves the
same order of its time derivative as the constant kinematic characteristics of the reference frame possesses. For
example, in a uniformly accelerating reference frame a free body preserves its acceleration.

3. The de-Broglie waves ψ = ψ0 exp(−iS/~) with the actions functions S = S(q, q̇, q̈, ..., q̇(n), ...) can be
considered as an embodiment of the fact that every reference frame is a vibrational one due to in�uences of
random �elds and waves, so that every free particle appears to be oscillating.

4. As the action function S = S(q, q̇, q̈, ..., q̇(n), ...) is a convergent series in high derivatives of q the di�erence
inf
∣∣S(q, q̇, q̈, ..., q̇(n), ...)− S(q, q̇)

∣∣ = h is �nite and can be identi�ed with the constant h. Within the presented
framework, the variables of the phase space (its high-order extension) provide an exhaustive description of the
entire dynamics of a particle, but they cannot be measured because the ideal inertial frames of reference do not
exist in reality. The in�nite dimensionality of Hilbert space can also be understood as a consequence of all high
order time derivatives being taken into account in the description of the dynamics [7-9].

Conclusion

From the very �rst steps of the quantum mechanics there have been numerous attempts to introduce there
certain hidden variables providing the possibility of its seamless integration into the classical paradigm. Today
it seems rather strange, as contrary to the classical mechanics, quantum mechanics may make use of in�nite
number of variables of the Hilbert space, and therefore, introduction of additional hidden variables is somehow
super�uous here. At the same time, the classical mechanics uses the �nite number of spatial coordinates and
their �rst and second order time derivatives, i.e. velocity and acceleration. So, it is reasonable to complement
the classical mechanics with the in�nite-dimensional space of higher-order derivatives of the spatial coordinates
in order to integrate the classical and quantum mechanics into a uni�ed theory with the common basis.
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quantities and strategies to distinguish whether correlations have a quantum nature or not have
been introduced. Among optical states, Gaussian states represent a fundamental resource since
they can be easily reproduced in laboratory. The most widespread Gaussian state is the thermal
equilibrium state. When divided by a BS, the produced bipartite state shows correlations that
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Introduction

The analysis and the application of the correlations among quantum systems is one of the major task of current
research. Quantum correlations are the basis of the rapid development of quantum technologies and are becoming
relevant in many other disciplines, ranging from biophysics [1�3] to cosmology [4]. These e�orts have led to
the introduction of di�erent quantities and strategies to discriminate whether correlations have a quantum
nature or not [1�5, 5]. Moreover, they are of the utmost importance in understanding the very foundations
of quantum mechanics. Among all the possible states that exhibit quantum or classical correlations, very
useful for practical applications is a thermal equilibrium state divided by a beam splitter (BS). This state
is a continuous variable system state, that belongs to the family of Gaussian states, that are states with
Gaussian Wigner functions [11�15]. In general, a thermal state is indeed a classical one according to the
Glauber approach; however, the bipartite state emerging from the BS displays non-zero Gaussian discord and,
thus, from the informational point of view it contains a non-vanishing amount of quantum correlations. Bipartite
thermal equilibrium states are largely exploited in quantum optical labs because it is quite easy to generate
and manipulate them. They are at the basis of most of the imaging protocols. A paradigmatic example of
exploitation of correlations among those semiclassical states is the ghost imaging protocol, where the image of
an object can be reconstructed from the correlations among the thermal beams exiting from the BS.

The ghost imaging protocol

In general, in ghost imaging protocols, one beam interacts with an object on one branch and then is detected by
a detector without any spatial resolution (bucket detector), while the other branch (correlated to the previous
one), which does not interact with the object, is registered by a spatially resolving detector, as, for example,
an array of pixels. After K acquisitions, the image of the object is reconstructed by means of a correlation
parameter S(xj), where xj represents the position of the pixel j in the reference region where the average is
performed experimentally over the K realizations. Hence, the idea at the basis of this protocol is that whether
one disposes of two noise-correlated light beams, one crossing an object to be imaged and then detected by
a bucket detector without any spatial resolution, the other addressed to a spatial resolving detector (as a
CCD camera), then the image of the object can be reconstructed by considering correlations between the two
measurements. Enlightened by the theoretical works of Klyshko [16], �rst time GI was experimentally realized
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by Pittman et. al. in 1995 with two entangled beams produced by spontaneous parametric down-conversion
(SPDC). Hence, this e�ect has been initially considered to be inherent to entanglement or in general quantum
correlations. Later [17] there were realized ghost imaging in thermal �elds, based on classical correlations of
the spatial coordinates and momenta of thermal radiation. The classical correlations may be represented with
the semi-classical theory only, but usage of a full quantum description provides comparison between the use of
classical and quantum correlations in ghost imaging. In this work we consider di�erent aspects of both classical
and quantum ghost imaging. We made a comparison between four di�erent correlation functions (CF) in terms
of their performance in reconstructing the image of the object. The CFs that we have considered are listed
below:

� the Glauber correlation function - S(xj) = G(2) = 〈N1N2(xj)〉 ;

� the normalized Glauber correlation function - S(xj) = g(2) = G(2)/〈N1〉〈N2(xj)〉;

� the covariance of the signals from two detectors (correlation functions of intensity �uctuations) - S(xj) =
Cov(N1, N2(xj)) ≡ 〈(N1− 〈N1〉)(N2(xj)− 〈N2(xj)〉)〉;

� the variance of the di�erence signal from two detectors - S(xj) = V ar(N1−N2(xj)) ≡ 〈(N1−N2(xj)−
〈N1−N2(xj)〉)2〉;

where N1 and N2 are the number of the detected photons respectively in the bucket arm and in the other
arm. If S is a general CF we can evaluate the quality of a ghost image using the signal to noise ratio (SNR)
de�ned as

SNR ≡ 〈Smax − Smin〉√
V ar(Smax − Smin)

, (1)

where V ar(Smax − Smin) is the variance of the image contrast.

Theoretical study

In our work, we have studied the in�uence of several parameters on the single-to-noise ratio: the brightness of
the light source, related to the average number of photons µ per single spatial-temporal mode; the total number
M of these modes collected by each element (pixel) of spatially resolving detector; the number of these elements,
i.e. resolution of the image. The M number is the ratio of the detection volume to the coherence volume, so
may be speci�ed as M = Vdet/Vcoh = (Apix · τdet)/(Acoh · τcoh), where Apix is the pixel size, τdet - the detection
(integration) time, Acoh - the coherence area (roughly, the speckle size, [18]), τcoh - the coherence time of the
light source. Usually in the experiment the detection time is much longer than the coherence time of the source
τdet � τcoh.

From the point of view of photon statistics the total number of modes usually isM ≥ 1, but for a very small
detection volume (Apix � Acoh and τdet ≤ τcoh) the total number of modes is equal to 1 (M = 1).

Because M is the number of modes collected by a pixel in a single acquired frame and µ is the number of
photons per single mode, 〈N2〉 = η2Mµ is the total number of photons detected in one pixel, where η is the
quantum e�ciency of the channel. The general e�ciency of each channel 0 ≤ ηi ≤ 1 (i = 1, 2) considers the
transmission, collection and detection e�ciency, i.e. the probability to detect an emitted photon. In our model
the situation where a pixel is smaller than the coherence area (Apix � Acoh) corresponds to a reduction of the
collection e�ciency.

The number of the spatial bits of the reconstructed image R depends on the relation between the pixel
size and the coherence area size. When the pixel is equal or smaller than the size of a single spatial mode R
is determined by the number of the spatial modes, otherwise it is given by the number of the pixels in the
ghost image area. The optimal condition is Apix ' Acoh that maximizes the resolution of the reconstructed
image and the collection e�ciency. Concerning that in the experiment the size of the pixel of the CCD camera
approximately matches the size of the speckle of the �eld. Actually in the case of quantum GI the pixel side is
twice the coherence area, because in order to exploit the quantum correlation it was more important to have a
high quantum e�ciency η than a high resolution R.

For a single spatio-temporal mode the photon number (of detected photons) momenta can be calculated
from the input-output relations of the process for PDC and pseudo-thermal light respectively. [19]
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Results

The full analytical formulas are quite cumbersome, so we show only the ideal case of unity transmission/quantum
e�ciency and collection e�ciency in both optical paths, η1 = η2 = η = 1 in table 2. Here and in the following the
SNR values are normalized to the square root of the number of realizations

√
K. Let us discuss some speci�c

regimes of the the performance of the ghost imaging in both pseudo-thermal and entangled light. Figure 1
represent the SNR with di�erent correlation parameters as a function of illumination level for single-mode
detection regime (M = 1) and ideal detection setup (η = 1).

TwGI

SNRG(2)

√
Mµ(1+µ)√

1+µ(6+M+4MR)+µ2(6+M+6MR+2M2R2)

SNRg(2)

√
MRµ(1+µ)√

1+µR(2+M+2MR)+µ2(−1+(3+M)R+2MR2)

SNRCov

√
Mµ(1+µ)√

1+µ(6+M+2MR)+µ2(6+M+2MR)

SNRV ar

√
2Mµ(1+µ)√

1+µ(6+4MR)+µ2(6+4MR)

ThGI

SNRG(2)

√
Mµ√

1+2MR+2µ(2+3MR+M2R2)+µ2(6+M+6MR+2M2R2)

SNRg(2)
√
MRµ√

−µ(1+µ)+(1+3µ+(3+M)µ2)R+2M(1+µ)2R2

SNRCov
√
Mµ√

1+2MR+4µ(1+MR)+µ2(6+M+2MR)

SNRV ar
√

2Mµ3/2√
1+µ(7+M(2+4R))+8µ2(1+MR)+µ3(6+4MR)

Table 2: Expressions for the SNR of the reconstructed ghost image with thermal light (ThGI) and with twin
beams (TwGI) for di�erent protocols described in the text, in the lossless case (η = 1).

In the typical situation of large R (R > 10) it turns out that SNR for g(2), Cov(N1, N2) and V ar(N1 −N2)
behave the same for large values of detected photons N � 1, approaching approximatively the upper value of
(2R)−1/2, although they reach this bound at di�erent values of the illumination level. For the pseudo-thermal
light GI di�erent protocols perform very similarly, the bound is reached at the high intensities of the detected
light beams N � 1. Here N = ηMµ is the "illumination", i.e. the total number of photons detected in the
pixel in the single image. The performance of the scheme based on G(2) measurements is the worst for both
quantum and thermal GI.

In case of twin-beams the SNR depends on the resolution, for the di�erence variance and covariance of two
signals the SNR goes to plane for illumination level N � 1/(2R), while our calculation shows that g(2) reaches
the �at region as soon as N � 1/(2R2).

Concerning the performance of a very low-brightness source, Figure 1 shows that the advantage of using
twin beams is in general very pronounced but, even with the same source, some protocol seems to be more
convenient than others. In particular, for the pseudo-thermal light all the protocols scale as proportional to
the number of detected photons per pixel N with the exception of the di�erence variance method, for which
SNR approaches zero faster, i.e. proportional to N3/2. For twin-beams GI all the methods lead to the same
asymptotic behavior, ∝ N1/2. Therefore, we can conclude that for the GI of a complex object in case of
classical or quantum illumination the three protocols exploiting g(2), Cov(N1, N2) and V ar(N1 −N2) have the
same performance at medium and high intensities, while for a low number photon �elds, preference should be
given to the normalized correlation function g(2).

For an ideal detection scheme (η1 = η2 = 1) the SNR of the ghost image in G(2) protocol drops down as
1/R (R � 1) and as 1/

√
M (M � 1) - see table 2. At at the same time, all the other protocols (exploiting

g(2), Cov(N1, N2) and V ar(N1 − N2)) scale as 1/
√
R (R � 1) and asymptotically ∼ const with respect to M,

for M � 1. That means the not-normalized and not-subtracted correlation function G(2) is not suitable for the
GI, because of the worse imaging characteristics obtained with this protocol comparing with other parameters.
Despite of that GI with G(2) is largely discussed in literature.
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Figure 1: Dependence of the ghost image SNR on the average photon number per pixel for di�erent protocols.
The number of spatio-temporal modes per pixelM and the resolution parameter R are set,M = 1 and R = 100.

Conclusions

Our work demonstrated that correlations between semiclassical states, as thermal equilibrium state divided by
a beam splitter, can be exploited in ghost imaging application with performances comparable with quantum
correlations. This can be quanti�ed using di�erent correlation functions. Our theoretical model shows that for
g(2), Cov(N1, N2) and V ar(N1−N2) GI with quantum light performs largely better than GI with semiclassical
light at low illumination levels (few photons per pixel in a single shot), but they become equivalent at high
illumination levels (many photons per pixel in a single shot).
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Abstract: After some reduction procedure made on the nonlinear evolution equation for nerve pulses,
based on thermodynamic principles, classic and non-classic traveling solutions have been obtained. We
have studied these solutions for particular values in the parameter space, subjected to the nontrivial
and condensate boundary conditions. We were able to obtain typical bell, and compacton like solutions
for the �rst case and bubble and solitons on background for the second case. These nonlinear traveling
waves could be responsible for transmitting e�ciently the necessary information along the axons.
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Introduction

As it is well known, the nature of the mechanisms for propagation signals along the nerve is one of the crucial
problems in biophysics. Hodgkin and Huxley in the 50s [1] studied the complex dynamics of the ionic currents
through voltage sensitive channels, and made detailed measurements of these currents. In 1966 Katz [2] proposed
for traveling pulse the soliton traveling pulse as a simplest model for this activity. Now it is well established that
the dynamic of ionic currents through voltage channels is responsible for the change of the membrane potential
in nerve tissues.

Later, the Hodgkin and Huxley system (HH) was developed independently by Richard FitzHugh, and Jin-
ichi Nagumo. Based on the work of Balthazar Van Der Pol, FitzHugh proposed a simpli�ed neuronal model
of Hodgkin and Huxley. For its part, Nagumo suggested as analogous neuronal, a nonlinear electrical circuit,
controlled by an equation system also similar to those of Van Der Pol currents. The proposed simpli�ed analog of
these authors, is called FitzHugh-Nagumo model [3], [4]. By using an analytic technique, the homotopy analysis
method (HAM), in the Fitzhugh�Nagumo equation, Abbasbandy [5], have found solitary wave solutions which
are subjected to the control of new auxiliary parameter. Being susceptible to fairly complete analysis, the
FHN system allows a qualitative understanding of the phenomenon of excitability, from the point of view of
dynamical systems [43].

Recently, Heimburg and coworkers have developed a model for nerve pulses that support soliton like solutions
[7, 8]. The model is constructed considering the nerve axon as a one dimensional cylinder with lateral density
excitations moving along the axes. This model for the nerve pulses is based on the propagation of a localized
density pulse (non linear wave) in the axon membrane. That is, resuming we can say that this theory is based
on the lipid transition from a �uid to a gel phase at slightly below of body temperatures.

We suppose that along the axon, not only well famous bell solitons could propagate , but also non-classical
soliton like solutions named compactons could be excited and travel carrying needed information. For the case
of nontrivial boundary condition we will study the possibility for obtain bobtopogical solutions like bubbles and
soliton on step. Thus, in the next section we brie�y expose the main nonlinear evolution equation for nerve
pulses. In the III section we show that compact solutions with the boundary trivial condition could appear and
will travel with sonic, subsonic and supersonic velocities along the nerve. The section IV is devoted to discuss
the appearance of bubbles and soliton on background, and �nally in the last section we discuss some features
around the found solutions and outline further implications of the model presented.
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Equation of motion

The theory [7, 8] is based on hydrodynamic properties of a density pulse in the presence of dispersion. In the
absence of dispersion and nonlinearity the equation of motion along the quasi-one dimensional axon is:

∂2U

∂t2
=

∂

∂x

(
c2
∂U

∂x

)
(1)

being U = ρA − ρA0 the change of density in the membrane, ρA0 is the density of the membrane at physiological
condition slightly above of melting transition.. Here c is the sound velocity with the value c = (κAs ρ

A)−1/2,
being κAs the compressibility. Subsequently, it is added the additional term responsible for dispersive e�ects

−h∂
4U
∂x4 . This term appears by experimental evidence on the relation between frequencies and velocities. For

getting available nonlinear real dispersion relation the next term after the second derivative with respect to the
special variable would stay the corresponding fourth derivative [8]. Next, it is assumed that the compressibility
depends on the "�eld" U as a polynomial function [9]

c2 = c20 + pU + qU2 + rU3 + ... (2)

Finally, the partial di�erential equation for di�erence of density is

∂2U

∂t2
=

∂

∂x

{(
c20 + pU + qU2

) ∂U
∂x

}
− h∂

4U

∂x4
(3)

The experiments made with nerve pulses shows the existence of narrow localized region of excitation. Thus,
there is a big possibility that these pulses are in fact solitons but without tails. As is well known the classical
solitons possess tails that could eventually interact at long distances that subsequently would degenerate the
whole pulse to charge the needed information. So, the e�ort in this sense will be assumed to �nd solitons
without tails i.e. solitary waves named regular or singular compactons.

Compactons and Classic Solutions

Let us investigate traveling (when z = x − vt) soliton solutions. Thus, the eq. (3) can be transformed to the
next one

h
(
dU
dz

)2
= (c20 − v2)U2 + p

3U
3 + q

6U
4 + 2CU + V0 (4)

with being p and q the parameters that appears in the Taylor expansion and V0 the constant of integration.
By applying the trivial boundary condition

if z →∞, then U → 0 and
dU

dz
→ 0 (5)

produces V0 = 0.

Solutions with sound velocity

First, let us consider the case: c20 = v2.
I. Sub-case C = 0. In this simple case by integrating the equation (4) we obtain the following solution

U(z) =
2p

p2

6 (z − z0)2 − q
(6)

By avoiding singular behaviors, the possible solution in this case is achieved by assuming the negative value of
the parameter q. The picture of this algebraic soliton solution is depicted in Figure1.

p = 3, q = −18α

II. Sub-case :C 6= 0. For this sub-case we obtained the compact like soliton provided that

q2

p3
= − 8

81C
(7)
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Figure 1: Algebraic soliton that travels with same velocity of sound along the axon

(12)
The integration of the equation (4) yields the following compact soliton like solution

U(ζ) =
Tan2(ζ)

3B + 2BTan2(ζ)
for ζ ∈ [−π, π] (8)

with the new variable ζ = ±
√

6BC
2 (z − z0) and the parameter B2 = − p

18C

Figure 2: Compact soliton like structures that travels with the same velocity of sound along the axon.

Soliton solutions for which v0 6= c0

Next, we investigate the solutions for which: c20 6= v2
0 For this case, we slightly transform the right hand side of

the equation (4)

h

(
dU

dz

)2

= CU(κU + aU2 + bU3 + 1) (9)

with the renamed parameters

κ =
(c20 − v2)

2C
, a =

p

6C
, b =

q

12C
(10)

Without lost of generality we can choice h = 1. Then, after integration we again obtain a perfect compact like
solution.

U =
Tan2(ξ)

(3A− κ) + (2A− κ) Tan2(ξ)
, for | ξ |≤ 2π (11)

with

ξ = ± 1
2

√
C(3A− κ)(z − z0)
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and b = (κ− 2A)A2, a = 2Aκ− 3A2

As can be observed this speci�c solution exists by avoiding singularities i.e. in the particular case only for
negative parameter values

B = κ− 2A < 0 (12)

The plot of the equation 11 is similar to the �gure of compact soliton represented in the Figure 1and shows
the robust con�guration of the soliton like solution. For these moving compactons with velocities di�ering from
the sound one, the parameters a and b satisfy the following relation

b =
1

27
(k − 2

√
κ2 − 3a)(κ+

√
κ2 − 3a)2 (13)

This expression depends on the soliton velocity by virtue of equation (10). Outside of this dependence between
the parameters the solutions probably will not admit compact support.

By deploying the constraint (12) we obtain the parameter region of available velocities. Thus, when κ > 0
the velocity corresponds to subsonic waves, i.e.

v2 < c0 − 2

√
pC

3
(14)

If the values of κ < 0 we obtain supersonic soliton waves with the next segment of values

c20 < v2 < c20 + 2

√
pC

3
(15)

Energy of the obtained solitons

The energy of solutions obtained for the ordinary nonlinear di�erential equation i.e. for traveling solutions can
be calculated by using the energy density, which in some ξ0 = 1.57, A = 1, k = 1, C = 2

The integration with respect to the variable ξ in the interval [−π, π] for compactons can be directly evaluated
using the energy density. From the equation (4) one can notice that the kinetic energy is equal to the potential
one for the "mechanical analog particle". This leads to calculate the total energy using the following equation

E =

∫ +z0

z0

W (U)

h
dz (16)

with the "potential" piece of energy density

W (u) = (c20 − v2)U2 +
p

3
U3 +

q

6
U4 + 2CU. (17)

This total energy depends on the velocity of the non-classical solution. For avoiding singular solutions,
when the values C 6= 0, traveling compact solution could emerge only when the velocities satisfy the relation
2A − κ > 0, that is in complete accordance with the previous analysis made on the parameter space (12) for
obtaining subsonic and also supersonic compact solutions.

Condensate boundary condition.

Now let us study the equation (4) by keeping in mind �rst the non-trivial or the condensate boundary condition

if z →∞ then U → U0 and
dU

dz
→ 0 (18)

After subsequent integration one can obtain the next equation

h
(
dU
dz

)2
= CU + (c20 − v2)(U)2 + α(U)3+

β(U)4 + V0
(19)

Where the parameters V0 and U0 satisfy the next equation

V0 = U0[(v2 − c20)U0 − αU2
0 − βU3

0 − C] (20)
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Traveling sonic solution

As for the case of trivial boundary condition, let us consider the case: c20 = v2. In this case the equation (4)
could be transformed

±
√
β

h
(z − z0) =

∫
1

r
√
r2 +Gr +M

dr (21)

with

U = r − a, M = 6a2 − 3α′a and G = α′ − 4a (22)

and α′ = α
β , V

′
0 = V0

β where the parameter a needs to satisfy the algebraic cubic equation

a3 −
(

3α

4β

)
a2 − C

4β
= 0

Having obtained the value of parameter a from the cubic equation (6), it should be easy to calculate the value
of parameter M by using equation (5). In order to integrate the equation (4) and obtain analytical and non
singular solutions we must put the condition for the discriminant of the expression under the square in the
Eq.(4) as follows

D = 4M −G2 = 8a2 − 4aα′ − α′2 < 0.

Under all these requirements we can make an assumption that regular localized soliton-like solutions exist when
the parameters a, α

β satisfy whichever of these two inequalities

I) a > α
4β (1 +

√
3)

II) α2β < a < α
4β (1 +

√
3)

(23)

These parameter restrictions will be the conditions for the existence of a set of non-topological like solitons.
By inverting the integral (4) written above, one has �nally the following solution by avoiding singular

behavior

U(z) =
2M

√
−D Cosh

{√
Mβ
h (z − z0)

}
−G

− a (24)

As usual, for qualitative purposes, this solution can be visualized by taking concrete parameter values. For
instance, for a good picture presentation let us suppose that β = 2 and according to the work [10] for unilamellar
DPPC vesicles we can take for example the value α = −7. Thus, the other important parameters should
estimated straightforward, and after reparameterization of variables �nally the resulting picture is depicted in
Figure 4.

Super and sub - sonic traveling non-topological solutions

Let us now investigate the other case when the values of the velocities of traveling structures are di�erent than
the sound one. We replace the value V0 of eq. (19) in the equation (4) and obtain for y = U − U0

h

(
dy

dz

)2

= y2(A+By + βy2) (25)

This equation is obtained considering the following relations of the parameter values:

C = −[2U0(c2o − v2) + 2αU2
o + 4U2

o + 4U3
oβ] (26)

A = (c2o − v2) + 3αU0 + 6βU2
0 (27)
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Figure 3: Typical �bright� soliton on background traveling with the same velocity of sound along the axon.

B = α+ 4βU0 (28)

To avoid singular behavior, let us suppose that parameters A, B and β satisfy the next inequalities

A > 0, δ = 4Aβ −B2 < 0 (29)

Thus, after the corresponding integration one can obtain the next representation of the solution

U =
Γ + U0Sinh

2
√
A(ξ − ξ0)

σ + Cosh2(
√
A(ξ − ξ0))

(30)

provided that

Γ =
A√
−δ

+
U0

2

(
m2

√
−δ

+ 1

)
, σ =

1

2

(
m2

√
−δ
− 1

)
and z− z0 = 2

√
h(ξ− ξ0), B = −m2. The solution exist if the next restrictions holds for the soliton velocities

3αU0 + 6βU2
0 > v2 − c20 > αU0 + 2βU2

0 − α2

4β
The bubble soliton can be easily seen when we choice appropriated parameter values. The simplest ones

could be generated when the relation Γ < σ in Equation (19) holds for determined parametric values.

Figure 4: By using the reparameterization of variables in equation (30) one can depict the bubble like soliton
on the background.

The bubble or in some sense the small dip or rarefaction of density and the soliton on the condensate are
propagating with some velocity whose values are restricted by the equation (17). Along with the existence of
bubble type of solitons, the soliton on the background also appears that should be dual to the �rst one.
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Conclusions

We have discussed in this contribution the appearance of classical and non - classical soliton like pulses along
the axon based on the pioneering work of [7,9,10]. The classical bell shape soliton shows in�nite tails in contrast
to the non classical solitons i.e. compactons without tails. Also we have obtained bubble and pedestal solitons
for the case of condensate boundary conditions. For the case of trivial boundary condition these solutions could
propagate with arbitrary velocities but restricted by parametric equations (12), i.e. sonic, super - and sub-sonic
solutions could appear in this model. This means that these waves could charge the information e�ciently faster
between the two signi�cant separated centers along the nerve axon. It should be interesting to check which one
of these possibilities take place in real experiments. The properties (including its shape and its energy) can be
determined uniquely as a function of compacton or algebraic soliton velocity. Given a measured nonlinear wave
velocity, the theory contains freely adjustable parameters and has the virtue of being feasible. As soon as the
nonlinear excitations in whichever segment of the axon structure is being activated by the presence of external
agents for example, phonons, etc, compacton or bell solitons could appear, describing realistically the density
displacements.

For the case of condensed boundary condition the traveling small dip or rarefaction and soliton excitation
on the background can exist and can run with constant velocity along the nerve. Thus, the long pulse plateau
in the nerve could be perturbed by bubble and bright solitons on the background. Therefore, in both directions
of the axis, at long distances from the active zone, the density displacements will maintain their value, forming
the non-vanishing boundary condition.

These solutions could eventually be responsible for various fundamental processes inside the nerve, espe-
cially those processes that involve some kind of parametric phase transitions. This is because of the realistic
interpretation of bubbles as a nucleus of some stable phases in the bubble vacuum or a metastable one. Also,
both solutions, that is, the bubble and the soliton on the background obtained here as particular soliton-like
solutions for speci�c values of parameters, could be used by the nerve system for enhancing con�dentiality in
communication tasks. For instance, as the bubble soliton amplitude vanishes or minimizes during propagation
along the nerve, this wave could be used to perform communication transmission for security, whereas the
required information can be retrieved by the dark/bright soliton conversion on the background.
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Introduction

The study of spin dynamics in a curved spacetime (a gravitational �eld) was initiated immediately after the
formulation of the relativistic Dirac theory. The early e�orts were mainly concerned with the development of
mathematical tools and methods appropriate for the description of the interaction of spinning particles with
the gravitational �eld. The studies of the spinor analysis in the framework of the general Lagrange-Noether
approach have subsequently resulted in the construction of the gauge-theoretic models of physical interactions,
including also gravity (see Refs. [1, 2] and references therein).

At a later stage, considerable attention was turned to the investigation of the speci�c physical e�ects in the
gravitational �eld predicted for quantum, semiclassical, and classical relativistic particles with spin. Various
aspects of the dynamics of fermions were studied in weak gravitational �elds, i.e., for the case when the spacetime
geometry does not signi�cantly deviate from the �at Minkowski manifold. Another class of problems was the
analysis of trajectories of semiclassical and classical particles in gravitational �eld con�gurations being exact
solutions of Einstein's equations like the Schwarzschild and Kerr metrics. The behavior of the spin in strong
gravitational �elds represents another interesting subject with possible applications to the study of the physical
processes in the vicinity of massive astrophysical objects and near black holes. For example, the overview of
the important mathematical subtleties is given in Refs. [3�6].

In this paper, we present the results of our investigations of the Dirac fermions based on the new method [7]
of the Foldy-Wouthuysen (FW) transformation. Earlier, we analyzed the dynamics of spin in weak static and
stationary gravitational �elds [8�11] and in strong stationary gravitational �elds [12] of massive compact sources.
These previous results are now extended on the general case of a completely arbitrary gravitational �eld.

The paper is organized as follows. In Sec. , we give preliminaries for the description of the general metric
and the coframe, and then derive the Hermitian Dirac Hamiltonian in an arbitrary curved spacetime. For
completeness, we also consider the electromagnetic interaction. In Sec. , we outline the FW technique and
derive the FW Hamiltonian together with the corresponding operator equations of motion. The central result is
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the derivation of the equation of spin precession an arbitrary gravitational �eld. The quantum and semiclassical
spin dynamics is compared with the dynamics of a classical spin in Sec. . We use the standard formalism of
Mathisson and Papapetrou, and discuss the Hamiltonian approach. The results obtained are summarized in
Sec. .

Our notations and conventions are the same as in Ref. [9]. In particular, the world indices of the tensorial
objects are denoted by Latin letters i, j, k, . . . = 0, 1, 2, 3 and the �rst letters of the Greek alphabet label the
tetrad indices, α, β, . . . = 0, 1, 2, 3. Spatial indices of 3-dimensional objects are denoted by Latin letters from
the beginning of the alphabet, a, b, c, . . . = 1, 2, 3. Temporal and spatial tetrad indices are distinguished by hats.

Dirac particle in a gravitational �eld

General parametrization of the spacetime metric

Let us recall some basic facts and introduce the notions and objects related to the description of the motion of
a classical spinning particle in a curved manifold. The massive particle is quite generally characterized by its
position in spacetime, xi(τ), where the local spacetime coordinates are considered as functions of the proper
time τ , and by the tensor of spin Sαβ = −Sβα. The analysis of the dynamics of the classical spinning particle
is given later in Sec. .

We denote 4-velocity of a particle Uα = eαi dx
i/dτ . In view of the choice of parametrization by the proper

time, it is normalized by the standard condition gαβU
αUβ = c2 where gαβ = diag(c2,−1,−1,−1) is the �at

Minkowski metric. We use the tetrad eαi (or coframe) to describe the dynamics of spinning particles on a
spacetime manifold in arbitrary curvilinear coordinates. When the spacetime is �at and the gravitational �eld
is absent, one can choose the global Cartesian coordinates and the holonomic orthonormal frame coinciding with
the natural one, eαi = δαi . The spacetime metric is related to the coframe �eld in the usual way: gαβe

α
i e
β
i = gij .

We use the notations t and xa (a = 1, 2, 3) for the coordinate time and the spatial local coordinates, respec-
tively. There are many di�erent ways to represent a general spacetime metric. A convenient parametrization of
the spacetime metric was proposed by De Witt [13] in the context of the canonical formulation of the quantum
gravity theory. In a slightly di�erent disguise, the general form of the line element of an arbitrary gravitational
�eld reads

ds2 = V 2c2dt2 − δâb̂W
â
cW

b̂
d (dxc −Kccdt) (dxd −Kdcdt). (1)

This parametrization involves more functions than the actual number of the metric components. Indeed, the
total number of the functions V (t, xc), Ka(t, xc), and W â

b(t, x
c) is 1 + 3 + 9 = 13 which is greater than 10.

However, we have to take into account that the line element (1) is invariant under rede�nitionsW â
b −→ LâĉW

ĉ
b

using arbitrary local rotations Lâĉ(t, x) ∈ SO(3). Subtracting the 3 rotation degrees of freedom, we recover
exactly 10 independent variables that describe the general metric of the spacetime.

Dirac equation

One needs the orthonormal frames to discuss the spinor �eld and to formulate the Dirac equation. From the
mathematical point of view, the tetrad is necessary to �attach� a spinor space at every point of the spacetime
manifold. Tetrads (coframes) are naturally de�ned up to a local Lorentz transformations, and one usually �xes
this freedom by choosing a gauge. We discussed the choice of the tetrad gauge in [11] and have demonstrated

that a physically preferable option is the Schwinger gauge [14, 15], namely the condition e 0̂
a = 0, a = 1, 2, 3.

Accordingly, for the general metric (1) we will work with the tetrad

e 0̂
i = V δ 0

i , eâi = W â
b

(
δbi − cKb δ 0

i

)
, a = 1, 2, 3. (2)

The inverse tetrad, such that eiαe
α
j = δij ,

ei
0̂

=
1

V

(
δi0 + δiacK

a
)
, eiâ = δibW

b
â, a = 1, 2, 3, (3)

also satis�es the similar Schwinger condition, e0
â = 0. Here we introduced the inverse 3×3 matrix,W a

ĉW
ĉ
b = δab .
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The following observation will be useful for the subsequent computations. A classical massive particle moves
along a world line xi(τ), i = 0, 1, 2, 3, parametrized by the proper time τ . Its 4-velocity is de�ned as usual
by the derivatives U i = dx/dτ . With respect to a given orthonormal frame, the velocity has the components
Uα = eαi U

i, α = 0, 1, 2, 3. It is convenient to describe the 4-velocity by its 3 spatial components vâ, a = 1, 2, 3,
in an anholonomic frame. Then Uα = (γ, γvâ), with the Lorentz factor γ−1 =

√
1− v2/c2, and, consequently,

U0 =
dt

dτ
= e0

αU
α =

γ

V
, (4)

Ua =
dxa

dτ
= eaαU

α =
γ

V

(
cKa + VW a

b̂ v
b̂
)
. (5)

We used (3) here. Dividing (5) by (4) and denoting

Fab = VW a
b̂,

we �nd for the velocity with respect to the coordinate time

dxa

dt
= Fab vb + cKa. (6)

The Dirac equation in a curved spacetime reads

(i~γαDα −mc)Ψ = 0, α = 0, 1, 2, 3. (7)

This equation is invariant under the general transformations of the spacetime coordinates (under di�eomor-
phism), and is covariant under the local Lorentz transformations. Recall that the Dirac matrices γα are de�ned
in local Lorentz (tetrad) frames and they have constant components. The spinor covariant derivatives are
consistently de�ned in the gauge-theoretic approach [1, 2, 16,17] as

Dα = eiαDi, Di = ∂i +
iq

~
Ai +

i

4
σαβΓi αβ . (8)

Here the Lorentz connection is Γi
αβ = −Γi

βα, and σαβ = i
2

(
γαγβ − γβγα

)
are the generators of the local

Lorentz transformations of the spinor �eld. For completeness, we assumed that the Dirac particle is charged
and the electric charge q describes its coupling to the 4-potential of the electromagnetic �eld Ai. Note that
the canonical dimension of the electromagnetic �eld strength 2-form F = dA and of the electromagnetic 1-form
A = Aidx

i is [F ] = [A] = [~/q], see [18]. The gravitational and inertial e�ects (which are deeply related to each
other in the framework of the gauge-theoretic approach) are encoded in coframe and connection in (7),(8); for
the relevant discussion see Refs. [19�21] and references therein.

Using the parametrization of the general metric (1) with the tetrad (2) in the Schwinger gauge, we �nd
explicitly the components of connection

Γi â0̂ = c2

V W b
â ∂bV ei

0̂ − c
V Q(âb̂) ei

b̂, (9)

Γi âb̂ = c
V Q[âb̂] ei

0̂ +
(
Câb̂ĉ + Câĉb̂ + Cĉb̂â

)
ei
ĉ. (10)

Here we introduced the two useful objects:

Qâb̂ = gâĉW
d
b̂

(
1
cẆ

ĉ
d +Ke∂eW

ĉ
d +W ĉ

e∂dK
e
)
, (11)

Câb̂
ĉ = W d

âW
e
b̂ ∂[dW

ĉ
e], Câb̂ĉ = gĉd̂ Câb̂

d̂. (12)

As usual, the dot ˙ denotes the partial derivative with respect to the coordinate time t. One can immediately
recognize that Câb̂

ĉ = −Cb̂â
ĉ is the anholonomity object for the spatial triad W â

b. The indices (that all run
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from 1 to 3) are raised and lowered with the help of the spatial part of the �at Minkowski metric, gâb̂ = − δab =
diag(−1,−1,−1).

One can derive the Dirac equation from the action integral

I =

∫
d4x
√
−g L,

with the Lagrangian (recall for the conjugate spinor Ψ := Ψ†γ0̂)

L =
i~
2

(
ΨγαDαΨ−DαΨγαΨ

)
−mcΨΨ. (13)

A direct check shows that, with (8)-(12) inserted, the Schr�odinger form of the Dirac equation derived from this
action involves a non-Hermitian Hamiltonian. However, this problem is �xed if we introduce the new wave
function by [12]

ψ =
(√
−ge0

0̂

) 1
2 Ψ. (14)

Such a non-unitary transformation also appears in the framework of the pseudo-Hermitian quantum mechanics
[22,23] (cf. [24]).

Variation of the action with respect to the rescaled wave function ψ yields the Dirac equation in Schr�odinger
form i~∂ψ∂t = Hψ. The corresponding Hermitian Hamiltonian reads [12]

H = βmc2V + qΦ + c
2

(
πb Fbaαa + αaFbaπb

)
+ c

2 (K · π + π ·K) + ~c
4 (Ξ ·Σ−Υγ5) .

(15)

Here K = {Ka}, and the kinetic momentum operator π = {πa} with πa = − i~∂a + qAa = pa + qAa accounts

for the interaction with the electromagnetic �eld Ai = (Φ, Aa). To remind the notation: β = γ0̂,α = {αa},Σ =

{Σa}, where the 3-vector-valued Dirac matrices have their usual form; namely, αa = γ0̂γa (a, b, c, · · · = 1, 2, 3)

and Σ1 = iγ2̂γ3̂,Σ2 = iγ3̂γ1̂,Σ3 = iγ1̂γ2̂. We also introduced a pseudoscalar Υ and a 3-vector Ξ = {Ξa} by [12]

Υ = V εâb̂ĉΓâb̂ĉ = −V εâb̂ĉCâb̂ĉ,
Ξâ = V

c εâb̂ĉ Γ0̂
b̂ĉ = εâb̂ĉQ

b̂ĉ.
(16)

Note that we have �xed a number of small points with the signs and numeric factors, and one should be careful
when comparing the above formulas with the earlier results presented in [12]. For the static and stationary

rotating con�gurations, the pseudoscalar invariant vanishes (εâb̂ĉCâb̂ĉ = 0), and thus the corresponding term
was absent in the special cases considered in Refs. [11, 12]. But in general this term contributes to the Dirac
Hamiltonian.

It is worthwhile to mention that the recent discussion [25] of the Dirac fermions in an arbitrary gravitational
�eld is very di�erent. In deep contrast to the explicitly Hermitian Hamiltonian (15), the non-Hermitian one is
used In Ref. [25].

The Foldy-Wouthuysen transformation

In the previous section, we described the dynamics of the fermion in the Dirac representation. The physical
contents of the theory is however revealed in the FW representation [26]. We will now construct the FW
Hamiltonian for the fermion moving in an arbitrary gravitational �eld described by the general metric (1). We
start with the exact Dirac Hamiltonian (15) and apply the method developed in [7].

Just like before in our earlier works [11, 12], we do not make any assumptions and/or approximations for
the functions V,W â

b,K
a. The Planck constant ~ will be treated as the only small parameter. In accordance

with this strategy, we retain in the FW Hamiltonian all the terms of the zero and �rst orders in ~. The leading
nonvanishing terms of order ~2 have been calculated in both nonrelativistic and weak �eld approximations in
our previous works [8,11,12] for the more special cases. These terms describe the gravitational contact (Darwin)
interaction.
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General preliminaries

A generic Hamiltonian can be decomposed into operators that commute and anticommute with β:

H=βM+ E +O, βM=Mβ, βE=Eβ, βO=−Oβ. (17)

Here, the operatorsM, E are even, and O is odd.
Foldy-Wouthuysen representation is obtained by means of the unitary transformation

ψFW = Uψ, HFW = UHU−1 − i~U∂tU−1. (18)

In arbitrary strong external �elds, the following transformation operator can be used [7]:

U = βε+βM−O√
(βε+βM−O)2

β,

U−1 = β βε+βM−O√
(βε+βM−O)2

.
(19)

Here ε =
√
M2 +O2, and U−1 = U† if H = H†. Applying (18), we obtain the explicit transformed Hamiltonian

H′ = βε+ E + 1
2T

(
[T, [T, (βε+ Z)]]

+β [O, [O,M]]− [O, [O,Z]]
− [(ε+M), [(ε+M),Z]]− [(ε+M), [M,O]]

−β {O, [(ε+M),Z]}+ β {(ε+M), [O,Z]}

)
1
T ,

(20)

where Z = E − i~ ∂
∂t and T =

√
(βε+ βM−O)2. The square and curly brackets denote the commutator

[A,B] = AB −BA and the anticommutator {A,B} = AB +BA, respectively.
The Hamiltonian (20) still contains odd terms proportional to ~. We can write it as follows:

H′ = βε+ E ′ +O′, βE ′ = E ′β, βO′ = −O′β, (21)

where ε =
√
M2 +O2. The even and odd parts are determined by

E ′ =
1

2
(H′ + βH′β)− βε, O′ =

1

2
(H′ − βH′β) . (22)

Additional unitary transformation removes the odd part, so that the �nal approximate Hamiltonian reads [7]

HFW = βε+ E ′ + 1

4
β

{
O′2, 1

ε

}
. (23)

For the case under consideration, we have explicitly [12]

M = mc2V, (24)

E = qΦ +
c

2
(K · π + π ·K) +

~c
4

Ξ ·Σ, (25)

O =
c

2

(
πb Fbaαa + αaFbaπb

)
− ~c

4
Υγ5. (26)

Foldy-Wouthuysen Hamiltonian and quantum dynamics

We now limit ourselves to the case when the electromagnetic �eld is switched o�. The computations along
the lines described in the previous subsection are straightforward, and after a lengthy algebra we obtain the
Foldy-Wouthuysen Hamiltonian in the following form

HFW = H(1)
FW +H(2)

FW . (27)
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Here the two terms read, respectively [27],

H(1)
FW = βε′ + ~c2

16

{
1
ε′ ,
(
2εcaeΠe{pb,Fdc∂dFba}

+Πa{pb,FbaΥ}
)}

+~mc4
4 εcaeΠe

{
1
T ,
{
pd,FdcFba∂bV

}}
,

(28)

H(2)
FW = c

2 (Kapa + paK
a) + ~c

4 ΣaΞa

+~c2
16

{
1
T ,

{
Σa{pe,Feb},

{
pf ,
[
εabc( 1

c Ḟ
f
c −Fdc∂dKf

+Kd∂dFf c)− 1
2F

f
d

(
δdbΞa − δdaΞb

)]}}}
,

(29)

ε′ =
√
m2c4V 2 + c2

4 δ
ac{pb,Fba}{pd,Fdc},

T = 2ε′
2

+ {ε′,mc2V }.
(30)

Let us derive the equation of motion of spin. As usual, we introduce the polarization operator Π = βΣ,
and the corresponding dynamical equation is obtained from its commutator with the FW Hamiltonian. The
computation is straightforward and we �nd

dΠ

dt
=
i

~
[HFW ,Π] = Ω(1) ×Σ + Ω(2) ×Π. (31)

Here the 3-vectors Ω(1) and Ω(2) are the operators of the angular velocity of spin precessing in the exterior
classical gravitational �eld. Their components read explicitly as follows [27]:

Ωa(1) = mc4

2

{
1
T , {pe, ε

abcFebFdc∂d V }
}

+ c2

8

{
1
ε′ , {pe, (2ε

abcFdb∂dFec + δabFeb Υ)}
} (32)

and

Ωa(2) = ~c2
8

{
1
T ,

{
{pe,Feb},

{
pf ,
[
εabc( 1

c Ḟ
f
c−Fdc∂dKf

+Kd∂dFf c)− 1
2F

f
d

(
δdbΞa − δdaΞb

)]}}}
+ c

2 Ξa.

(33)

One may notice that the two di�erent matrices, Σ and Π, appear on the right-hand side of Eq. (31).
This is explained by the fact that the vector Ω(1) contains odd number of components of the momentum
operator, whereas the vector Ω(2) contains even number of pa. Actually, both Ω(1) and Ω(2) depend only on

the combination Fbapb. However, the velocity operator is proportional to an additional β factor and is equal
to va = βc2Fbapb/ε′, as we demonstrate below, see Eq. (40). As a result, the operator Ω(1) also acquires an
additional β factor [11], when it is rewritten in terms of the velocity operator v. Note also that only the upper
part of β proportional the unit matrix is relevant in the FW representation. Therefore, the appearance of β
does not lead to any physical e�ects at least until antiparticles are considered (which would require special
investigations).

We now use the general results above to obtain the corresponding semiclassical expressions by evaluating all
anticommutators and neglecting terms of the powers of ~ higher than 1. Then Eqs. (31)-(33) yield the following
explicit semiclassical equations describing the motion of the average spin (as usual, vector product is de�ned
by {A×B}a = εabcA

bBc) [27]:

ds
dt = Ω× s = (Ω(1) + Ω(2))× s, (34)
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Ωa(1) = c2

ε′ F
d
cpd

(
1
2Υδac − εaefV Cef c

+ ε′

ε′+mc2V ε
abcW e

b̂ ∂eV

)
,

(35)

Ωa(2) = c
2 Ξa − c3

ε′(ε′+mc2V ) ε
abcQ(bd)δ

dnFknpkF lcpl. (36)

Here, in the semiclassical limit,

ε′ =
√
m2c4V 2 + c2δcdFac Fbd pa pb . (37)

We can substitute the results obtained into the FW Hamiltonian (27) and recast the latter in a compact
and transparent form in terms of the precession angular velocities Ω(1),Ω(2):

HFW = βε′ + c
2 (K ·p+ p ·K)

+~
2

(
Π ·Ω(1) + Σ ·Ω(2)

)
.

(38)

We can use Eq. (38) to derive the velocity operator in the semiclassical approximation:

dxa

dt = i
~ [HFW , xa] = β ∂ε′

∂pa
+ cKa

= β c2

ε′ F
a
bδ
bcFdcpd + cKa.

(39)

Comparing this with the relation between the holonomic and anholonomic components of the velocity, Eq. (6),
we �nd the velocity operator in the Schwinger frame (2):

β
c2

ε′
Fbapb = va. (40)

This immediately yields δcdFac Fbdpapb = (ε′)2v2/c2. Using this in (37), we have (ε′)2 = m2c4V 2 + (ε′)2v2/c2,
and thus we �nd

ε′ = γ mc2 V. (41)

Equations (40) and (41) are crucial for establishing the full agreement of the quantum and classical dynamics
of spin. In particular, using (40) and (41), we �nd

ε′

ε′+mc2V = γ
1+γ ,

c3

ε′(ε′+mc2V ) F
b
apbFdcpd = γ

1+γ
vavc
c .

(42)

Quantum-mechanical equations of particle dynamics

We now turn to the quantum-mechanical analysis of a particle in the gravitational �eld. The dynamics of spin
is described in an anholonomic frame. For consistency, we will use an anholonomic frame description for the
particle dynamics, too. The Schwinger gauge with e0

â = 0 simpli�es the equation for the force operator which
is given by [27]

Fâ = dpâ
dt = 1

2
d
dt

{
ebâ, pb

}
= 1

2

{
dW b

â

dt , pb

}
+ 1

2

{
W b

â,
dpb
dt

}
= 1

2

{
Ẇ b

â, pb

}
+ i

2~
{

[HFW ,W b
â], pb

}
− 1

2

{
W b

â, ∂bHFW
}
.

(43)

Here as before the partial derivative with respect to the coordinate time is denoted by the dot, in particular,
Ẇ b

â := ∂tW
b
â.
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The explicit expression for the force operator reads [27]

Fâ = 1
2

{
Ẇ b

â, pb

}
+ 1

4

{
pb,
{
∂HFW
∂pc

, ∂cW
b
â

}}
− 1

2

{
W b

â, ∂bHFW
}
,

(44)

∂HFW
∂pc

= β c
2

4 δ
ad
{

1
ε′ ,
{
pb,FbaFcd

}}
+ cKc + ~

2T
c, (45)

where we introduced the following compact notation

Tc =
∂U
∂pc

, U := Π ·Ω(1) + Σ ·Ω(2). (46)

Corrections due to the noncommutativity of operators are of order of ~2 and can be neglected in (44). Let us
split the total force operator into the terms of the zeroth and �rst orders in the Planck constant:

Fâ = F
(0)
â + F

(1)
â . (47)

The zeroth order terms read as follows

F
(0)
â = 1

2

{
Ẇ b

â, pb

}
− 1

2

{
W b

â, ∂b

[
βε′ + c

2

(
Kapa

+paK
a
)]}

+ 1
4

{
pb,

{(
β c

2

4 δ
ad
{

1
ε′ , {pb,F

b
aFcd}

}
+cKc

)
, ∂cW

b
â

}}
.

(48)

These terms describe the in�uence of the gravitational �eld on the particle without taking into account its
internal structure. The �rst term in Eq. (48) is important for the motion of the particle in nonstationary
spacetimes, for example, in cosmological context. The next term describes the Newtonian force, the related
relativistic corrections, and the Coriolis-like force proportional to K. The last term also contributes to the
relativistic corrections to the force acting in static spacetimes that arise in addition to the velocity-independent
Newtonian force.

All the terms of the �rst order in the Planck constant are proportional to the spin operators and therefore
they collectively represent the quantum-mechanical counterpart of the Mathisson force (which is an analogue
of the Stern-Gerlach force in electrodynamics). This force is given by, recall the notation (46),

F
(1)
â =

~
8

{
pb,
{
Tc, ∂cW

b
â

}}
− ~

4

{
W b

â, ∂bU
}
. (49)

We will demonstrate the agreement between the quantum-mechanical and the classical equations of particle
dynamics in the next section.

Equation (48) and (49) perfectly reproduce all previously obtained quantum-mechanical results [8,9,11,12].
In order to illustrate this, let us �nd the force on the spinning particle in the metric [19] of an arbitrarily moving
noninertial (accelerated and rotating) observer:

V = 1 +
a · r
c2

, W â
b = δab , Ka = −1

c
(ω × r)a. (50)

The FW Hamiltonian for this metric derived in Ref. [12] reads:

HFW =
β

2

{(
1 +

a · r
c2

)
,
√
m2c4 + c2p2

}
− ω · (r × p)

+
~
2

Π · a× p
mc2(γ + 1)

− ~
2

Σ · ω, (51)

where the object that has the meaning of the Lorentz factor is de�ned by

γ =

√
m2c4 + c2p2

mc2
. (52)
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Using the FW Hamiltonian (51) in (44) and (45) yields the explicit force

Fâ = − β

c2
aa
√
m2c4 + c2p2 − (ω × p)a

= βmγ (−a+ v × ω)a . (53)

Here we used Eq. (52) and the relation between the operators of momentum and velocity pâ = ebâpb = βγmva
which is recovered from (40). One can straightforwardly verify that the usual structure of the inertial forces (in
particular, the Coriolis and centrifugal pieces) is encoded in the force (53), see the corresponding computation
of the coordinate acceleration operator in [12].

For the metric (50), the spacetime curvature vanishes. As a result, the curvature- and spin-dependent
Mathisson force is zero. In the general case, the Mathisson force is nontrivial and violates the equivalence
principle (see Ref. [28]). In a separate publication, we will analyse the possible generalization of the equivalence
principle for spinning particles, making use of the force framework developed here. As a preliminary step, we
refer to [12] where we evaluated the quantum force for the weak gravitational �eld and recovered the linearized
Mathisson force, thus con�rming the earlier results [29,30].

Any theory based on the Dirac equation can reproduce only a certain reduced form of the equation of spin
motion. The formal reason is the absence in the Lagrangian and the Hamiltonian of the terms bilinear in the
spin matrices because their product can always be simpli�ed: ΣaΣb = δab + iεabcΣc. As a result, the equation
of spin motion of a Dirac particle cannot contain such terms. In quantum mechanics of particles with higher
spins (s > 1/2) as well as in the classical gravity, the terms bilinear in spin cannot be reduced and the general
MP equations [31,32] should be used.

Classical spinning particles

Mathisson-Papapetrou approach

The motion of classical spinning particles in the gravitational �eld can be consistently described by the generally
covariant MP theory [31, 32], for the recent discussion see also [33�36]. In this framework, a test particle is
characterized by the 4-velocity Uα and the tensor of spin Sαβ = −Sβα. The total 4-momentum is not collinear
with the velocity, in general. In Ref. [37], a di�erent noncovariant approach was developed, in which the main
dynamical variable is the 3-dimensional spin de�ned in the rest frame of a particle. In our previous work [8�12]
we have used the MP theory and demonstrated its consistency with the noncovariant approach.

The analysis of the general MP equations is a di�cult task [35] and the exact solutions are not available
even for the simple spacetime geometries. The knowledge of the symmetries of the gravitational �eld, i.e., of
the corresponding Killing vectors, signi�cantly helps in the integration of the equations of motion, as can be
demonstrated [38] for the de Sitter spacetime, in particular. However, in the absence of the symmetries, various
approximation schemes were developed to �nd solutions of MP equations of motion. Following [33], we neglect
the second order spin e�ects, so that the MP system reduces to

DUα

dτ
= fαm = − 1

2m
SµνUβRµνβ

α, (54)

DSαβ

dτ
=

UαUγ
c2

DSγβ

dτ
− UβUγ

c2
DSγα

dτ
. (55)

On the right-hand side of (54) we have the Mathisson force fαm that depends on the Riemann curvature tensor
Rµνβ

α of spacetime. The tensor of spin satis�es the Frenkel condition UαS
αβ = 0 and gives rise to the vector

of spin

Sα =
1

2
εαβγS

βγ . (56)

Here we use the totally antisymmetric tensor

εαβγ =
1

c
ηαβγδU

δ, (57)
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constructed from the Levi-Civita tensor ηαβγδ. The relation (56) can be inverted

Sαβ = − εαβγSγ (58)

with the help of the identity

εαβγεµνγ = Pαν P
β
µ − Pαµ P βν , (59)

where Pαµ = δαµ − 1
c2U

αUµ is the projector on the rest frame of the particle.
Using the de�nition (56), we rewrite the equation (55) in an alternative form

DSα
dτ

=
UαU

β

c2
DSβ
dτ

= − 1

c2
Uαf

β
mSβ . (60)

With the help of the projectors and antisymmetric tensor, one can decompose the curvature tensor into the
three irreducible pieces

IEαβ =
UµUν

c2
Rαµβν , (61)

IMαβ =
1

4
εαµνεβρσRµνρσ, (62)

IBα
β =

Uγ
2c
εαµνR

βγµν . (63)

By construction, these tensors satisfy the orthogonality conditions
IEαβU

β = 0, IMαβUβ = 0, IBα
βUβ = 0, IBα

βUα = 0. Taking into account the obvious symmetry IEαβ =
IEβα and IMαβ = IMβα, we have 6 + 6 + 8 = 20 independent components for these objects. The curvature
decomposition reads explicitly

Rαβµν = 1
c2

(
UαUµIEβν − UβUµIEαν − UαUνIEβµ

+UβUνIEαµ
)

+ εαβγεµνλIMγλ + 1
c

[
εαβγ(UµIBγ

ν

−UνIBγµ) + εµνγ
(
UαIBγ

β − UβIBγα
)]
.

(64)

As a result, we rewrite the Mathisson force as [27]

fαm =
c

2m
IBβ

αSβ . (65)

The physical spin is de�ned in the rest frame of a particle where the 4-velocity reduces to uα = (1,0) = δα0 .
The local reference frame and the rest frame are related by the Lorentz transformation such that Uα = Λαβu

β .
Recalling Uα = (γ, γva), the Lorentz matrix reads explicitly

Λαβ =

(
γ γvb/c

2

γva δab + (γ − 1)vavb/v
2

)
, (66)

with the Lorentz factor γ = 1/
√

1− v2/c2, where v2 = δabv
avb.

The physical spin is then sα = (Λ−1)αβS
β , hence sα = (0, s). We rewrite Eq. (60) as dSα

dτ = ΦαβS
β , with

Φαβ = −U iΓiβα + 1
c2 (fαmUβ − fβmU

α). From this we �nd the equation of motion of the physical spin:

dsα

dτ
= Ωαβs

β , (67)

Ωαβ = (Λ−1)αγΦγδΛ
δ
β − (Λ−1)αγ

d

dτ
Λγβ . (68)

Noticing that with respect to the coordinate basis the 4-velocity is U i = γei
0̂

+ γva eiâ, we recast the MP

system (54) and (67) into the 3-vector form [27]

dγ

dτ
=

γ

c2
v · Ê, (69)

d(γv)

dτ
= γ

(
Ê + v ×B

)
, (70)

ds

dτ
= Ω× s. (71)
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Here using Eqs. (1) and (65), we introduced the objects that can be called the generalized gravitoelectric and
gravitomagnetic �elds [27]:

Ea =
γ

V
δac
(
cQ(ĉb̂)v

b − c2W b
ĉ ∂bV

)
, (72)

Ba =
γ

V

(
− c

2
Ξa − 1

2
Υ va + εabcV Cbcdvd

)
, (73)

Êa = Ea +
c

2mγ
IBb

a

(
sb − γ

γ + 1

vbvc
c2

sc
)
. (74)

The components of the angular velocity of the spin precession, −εabcΩbc/2, are obtained from Eq. (68):

Ω = −B +
γ

γ + 1

v × E
c2

. (75)

Alternatively, we can explicitly write the precession velocity components with the help of (9) and (10) as [11,37]

Ωâ = εabc U
i

(
1

2
Γi
ĉb̂ +

γ

γ + 1
Γi0̂

b̂vĉ/c2
)
. (76)

Finally, substituting (72) and (73) into (75), we obtain the exact classical formula for the angular velocity of
the spin precession in an arbitrary gravitational �eld [27]:

Ωâ =
γ

V

(
1

2
Υ vâ − εabcV Cb̂ĉ

dvd̂ +
γ

γ + 1
εabcW d

b̂ ∂dV vĉ

+
c

2
Ξâ − γ

γ + 1
εabcQ(̂bd̂)

vd̂vĉ
c

)
. (77)

The terms in the �rst line are linear in the 4-velocity of the particle, whereas the terms in the second line contain
the even number of the velocity factors.

As compared to the precession of the quantum spin described by Ω(1) and Ω(2) using the coordinate time,
the classical spin precession velocity Ωâ contains an extra factor

dt

dτ
= U0 =

γ

V
, (78)

since the classical dynamics is parameterized using the proper time.
It is worthwhile to notice that the equations of motion of a particle (69) and (70) have a remarkably simple

form of the motion of a relativistic charged particle under the action of the Lorentz force. It is interesting
to mention a certain asymmetry: the Mathisson force (65), that depends on the spin and the curvature of
spacetime, contributes only to the gravitoelectric �eld (74) but not to the gravitomagnetic one. Using Eq. (69),
we can recast Eq. (70) into the dynamical equation [27]

dv

dτ
= Ê − v(v · Ê)

c2
+ v ×B. (79)

Let us consider the motion of the classical particle in the metric of a noninertial observer (50). Since Ê = E =
− γ

V a and B = γ
V ω,

d(γv)

dt
= γ (−a+ v × ω) , (80)

where we changed from the proper time parametrization to the coordinate time using (78). As we see, the
classical (80) and the quantum (53) forces are the same.

Finally, making use of (40) and (41), we conclude that the classical equation of the spin motion (75) agrees
with the quantum equation (31) and with the semiclassical one (34). Thus, the classical and the quantum theories
of the spin motion in gravity are in complete agreement. This is now veri�ed for the arbitrary gravitational
�eld con�gurations. We thus con�rm and extend our previous results obtained for the weak �elds [11] and for
special strong �eld con�gurations [12].
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Hamiltonian approach

It is instructive to compare the classical and quantum Hamiltonians of a spinning particle. In order to do this,
one can start from the classical Hamiltonian of a spinless relativistic point particle (with an electric charge q,
in general). With the 3-velocity va = dxa/dt = Ua/U0, we can write the Lagrangian in the form

L = −mc
(
g00 + 2g0av

a + gabv
avb
)1/2 − qA0 − qAbvb. (81)

The canonical momentum is

pa =
∂L
∂va

= − mc(g0a + gabv
b)

(g00 + 2g0ava + gabvavb)1/2
− qAa. (82)

Inverting, we �nd velocity in terms of momentum πa = pa + qAa:

va=
g0a

g00
− g̃abπb

[g00(m2c2−g̃abπaπb)]1/2
, g̃ab=gab− g

0ag0b

g00
. (83)

As a result, the classical Hamiltonian reads (see Ref. [39])

Hclass = pav
a − L =

√
m2c2 − g̃abπaπb

g00
+
g0aπa
g00

+ qA0. (84)

For the contravariant components of the general metric (1) we have gij = eiαe
j
βg
αβ = 1

c2 e
i
0̂
ej

0̂
− eiĉe

j

d̂
δcd. Thus

explicitly, using Eq. (3):

g00 = 1
c2V 2 , g0a = Ka

cV 2 ,
gab = 1

V 2

(
KaKb −FacFbdδcd

)
.

(85)

As a result, the classical Hamiltonian (84) takes the form

Hclass =
√
m2c4V 2 + c2δcdFac Fbd πa πb + cK · π + qΦ. (86)

Now, let us discuss a generalization of the Hamiltonian theory with spin included. In order to take into
account the spin correctly, in a Cosserat type approach a material frame (of four linearly independent vectors)
is attached to a particle, thus modelling its internal rotational degrees of freedom. We denote it hiα.

Such a material frame does not coincide with the spacetime frame, hiα 6= eiα. In particular, the zeroth leg is
given by particle's 4-velocity

hi
0̂

= U i. (87)

Any two orthonormal frames are related by a Lorentz transformation, hiα = eiβΛβα. The condition (87) means

that the Lorentz matrix Λβα brings one to a local reference frame Uα = Λαβu
β in which the particle is at

rest, i.e., uα = δα
0̂
. This is straightforwardly demonstrated: U i = eiαU

α = eiαΛαβu
β = hiαu

α = hi
0̂
. The

corresponding Lorentz transformation is explicitly given by Eq. (66).
The standard way to take the dynamics of spin into account [40�42] is to amend the classical Hamiltonian

by the term 1
2S

ijΩij with

Ωij := hiα
D

dτ
hαj = hiαU

k∇khαj = hiαU
k
(
∂kh

α
j − Γkj

lhαl
)
. (88)

Rewriting everything in terms of the objects in particle's rest frame, Sαβ = hαi h
β
j S

ij and Ωαβ = hαi h
j
βΩij , we

�nd

1

2
SijΩij =

1

2
SαβΩαβ = s ·Ω. (89)

Here we recover the precession velocity vector (76).
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The resulting complete Hamiltonian has the structure that was proposed in the framework of the general
discussion in the Ref. [37]:

Hclass =
√
m2c4V 2 + c2δcdFac Fbd πa πb

+cK · π + qΦ + s ·Ω. (90)

In the general case, Ω should include both electromagnetic and gravitational contributions.
The obvious similarity of quantum (38) and classical (90) Hamiltonians is another demonstration of complete

agreement of the quantum-mechanical and classical equations of motion discussed in the previous subsection.
The consistency between the classical Hamiltonian dynamics and the quantum-mechanical equations of particle
dynamics derived in Sec. is also con�rmed by the computation of the force. Switching o� the electromagnetic
�eld, we �nd the classical equation for the force

F classâ = pbẆ
b
â + pb

∂Hclass
∂pc

∂cW
b
â −W b

â∂bHclass. (91)

Rewriting the spin-dependent part in Eq.(44) in terms of the spin operator, s = ~Σ/2, shows its consistency
with Eq. (91).

Conclusions

This paper continues the study of the motion of Dirac fermions in a curved spacetimes. We use the new
mathematical method allowing a derivation of a general relativistic FW Hamiltonian [7]. We consider the case
of an arbitrary spacetime metric and generalize our results obtained for the weak �elds and for the special
static and stationary �eld con�gurations [8�12, 27]. The convenient parametrization in terms of the functions
V (t, xc), Ka(t, xc), and W â

b(t, x
c) provides a uni�ed description of all possible inertial and gravitational �elds.

We also include the classical electromagnetic �eld for completeness. In this general framework, we derive
the Hermitian Dirac Hamiltonian (15). Starting with this master equation, we apply the Foldy-Wouthuysen
transformation [7] and construct the Hamiltonian (27) in the FW representation for an arbitrary spacetime
geometry. In this paper, we have con�ned ourselves to the purely Riemannian case of the Einstein's general
relativity. A possible generalization to the non-Riemannian geometries may be analysed elsewhere. Making
use of the FW Hamiltonian, we derive the operator equations of motion. In particular, we study the quantum-
mechanical spin precession (31) and its semiclassical limit (34). One can apply these general results to compare
the dynamics of a spinning particle in the inertial and gravitational �elds, thus revisiting the validity of the
equivalence principle [43]. We derive the force operator and analyse the quantum dynamics of the particle
under its action in Sec. . In the second part of the paper, we consider the motion of the classical particle with
spin. In the framework of the Mathisson-Papapetrou theory, we obtained the dynamical equations (69), (70),
and (79) which have a remarkably simple form of the motion of a relativistic particle under the action of the
Lorentz force, with the Mathisson force included into the generalized gravitoelectric �eld (74). We also derived
the equation (77) for the angular velocity of spin precession in the general gravitational �eld. It is satisfactory
to see that our results further con�rm the earlier conclusions [11, 12] and demonstrate that the classical spin
dynamics is fully consistent with the semiclassical quantum dynamics of the Dirac fermion. Finally, the complete
consistency of the quantum-mechanical and classical descriptions of spinning particles is also established using
the Hamiltonian approach in Sec. .
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Space with spinor structure and analytical properties of
the solutions of Klein-Fock equation in cylindric parabolic
coordinates

V.M. Red'kov, E.M. Ovsiyuk
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Mozyr State Pedagogical University, Belarus

Abstract: Possible quantum mechanical corollaries of changing the vectorial geometrical model
of the physical space, extending it twice, in order to describe its spinor structure (in other termi-
nology and emphasis it is known as the Hopf's bundle) are investigated. The extending procedure
is realized in cylindrical parabolic coordinates: G(t, u, v, z) =⇒ G̃(t, u, v, z). It is done through
expansion twice as much of the domain G so that instead of the half plane (u, v > 0) now the
entire plane (u, v) should be used accompanied with new identi�cation rules over the boundary
points. Solutions of the Klein-Fock and Schr�odinger equations Ψε,p, a = eiεteipzUa(u)Va(v) are
constructed in terms of parabolic cylinder functions, a is a separating constant. Given quantum
numbers ε, p, a four types of solutions are possible: Ψ++,Ψ−−; Ψ+−,Ψ−+. The �rst two Ψ++,Ψ−−
provide us with single-valued functions of the vectorial space points, whereas last two Ψ+−,Ψ−+

have discontinuities in the frame of vectorial space and therefore they must be rejected in this model.
All four types of functions are continuous ones being regarded in the spinor space. It is shown that
solutions Ψ++,Ψ−−, Ψ+−,Ψ−+ all are the eigen-functions of two discrete spinor operators δ̂ and
π̂: δ̂ (u, v) = (−u,−v) , π̂(u, v) = (u,−v) , δ̂ (x, y) = (x, y) , π̂(x, y) = (x,−y) . Two other
classi�cations of the wave functions over discrete quantum numbers are given. It is established that all
solutions Ψ++,Ψ−−, Ψ+−,Ψ−+ are orthogonal to each other provided that integration is done over
extended domain parameterizing the spinor space. Simple selection rules for matric elements of the
vector and spinor coordinates, (x, y) and (u, v), respectively, are derived. Selection rules for (u, v) are
substantially di�erent in vector and spinor spaces. In the supplement some relationships describing
primary geometric objects, spatial spinor ξ and η, as functions of cylindrical parabolic coordinates, are
given.

Key words: geometry, spinor space, quantum mechaincs, wave function
PASC: 02.30.Gp, 02.40.Ky, 03.65Ge, 04.62.+v
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Introduction

In the literature, there exist [1-31] three terminological di�erent approaches though close in their intrinsic
essence. There are a space-time spinor structure (see the book by by Penrose and Rindler [29] as a modern
embodiment of the old idea [1-4] to use spinor groups instead of the orthogonal ones), the Hopf bundle [5] and
the Kustaanheimo-Stifel bundle [6,7].

The di�erences between three mentioned formalisms consist mainly in conceptual accents (see for more detail
[32]). In the Hopf's technique it is suggested to use in all parts only complex spinors ξ and conjugated ξ∗ instead
of real-valued vector (tensor) quantities. In the Kustaanheimo-Stifel approach we are to use four real-valued
coordinates, form which Cartesian coordinates (x, y, z) can be formed up by means of de�nite bilinear functions.
These four variables by Kustaanheimo-Stifel are real and imaginary parts of two spinor components. The known
spinor invariant (ξ′ξ

′∗+ ξ2ξ
′2) becomes the sum of four squared real quantities, so that we can associate spinor

technique with geometry of the Riemann space S3 of constant positive curvature.
In essence, the Kustaanheimo-Stifel's approach is other elaboration of the same Hopf's technique based

on complex spinors ξ and ξ∗, in terms of four real-valued variables. In so doing, we are able to hide in
the formalism the presence of the non-analytical operation of complex conjugation. Spinor space structure,
formalism developed in the present work, also exploits possibilities given by spinors to construct 3-vectors,
however the emphasis is taken to doubling the set of spatial points so that we get an extended space model
that is called a space with spinor structure [32-38]. In such an extended space, in place of 2π-rotation, only
4π-rotation transfers the space into itself.
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The procedure itself of doubling the manyfold can be realized easier when for parameterizing the space
some curvilinear coordinate system is used instead of the Cartesian coordinates. In such context, spherical and
parabolic coordinates were considered in [37]. In the present paper, the use of cylindrical parabolic coordinates
is studied as applied for description of spinor space structure. Now we study analytical properties of Schr�odinger
and Klein-Fock the wave solutions depending on vector and spinor space models. It is demonstrated explicitly
that transition to an extended space model (with spinor structure) lead us to augmenting the number of basis
wave functions of a quantum-mechanical scalar particle. Also, some possible manifestations of the extended
space structure in matrix elements of physical quantities are discussed.

Parabolic cylindrical coordinates

These coordinates in the vector 3-space model are introduced by relations

x =
u2 − v2

2
, y = u v , z = z .v2 = −x+

√
x2 + y2 ,

u2 = +x+
√
x2 + y2 . (1)

To cover all points of the vector space (x, y, z) it su�ces any one from the following four solutions:

v = +

√
−x+

√
x2 + y2 , u = ±

√
+x+

√
x2 + y2 , (2)

v = −
√
−x+

√
x2 + y2 , u = ±

√
+x+

√
x2 + y2 ,

v = ±
√
−x+

√
x2 + y2 , u = +

√
+x+

√
x2 + y2 ,

v = ±
√
−x+

√
x2 + y2 , u = −

√
+x+

√
x2 + y2 . (3)

For de�niteness, let us use the �rst variant from (2):

v = +

√
−x+

√
x2 + y2 , u = ±

√
+x+

√
x2 + y2 .

- u

6
v
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Fig 1. The domain G(u, v) to parameterize the vector model

Correspondence between the points (x, y) and (u, v) can be illustrated by the formulas and schemes:

u = k cosφ , v = k sinφ , φ ∈ [ 0, π ] ;

x = (k2/2) cos 2φ , y = (k2/2) sin 2φ , 2φ ∈ [0, 2π] (4)

- x

6
y

B1

B2

A1

A2

- u

6
v
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�
�

@
@
@

A1A2
B1B2∗ ∗

q
qc ����

Fig 2. The mapping G(x, y) =⇒ G(u, v)
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In the following, when turning to the case of spinor space, we will see the complete symmetry between
coordinates u v: namely, they are referred to Cartesian coordinates of the extended model (x, y, z) ⊕ (x, y, z)
through the formulas

v = ±
√
−x+

√
x2 + y2 , u = ±

√
+x+

√
x2 + y2 . (5)

the latter can be illustrated by the Fig 3:
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Fig 3. G̃(u, v) to cover spinor space

The metric of 3-space in parabolic cylindrical coordinates is

dl2 = dx2 + dy2 + dz2 = (u2 + v2)(du2 + dv2) + dz2 .

Solutions of the Klein-Fock equation and functions of parabolic cylin-
der

Let us consider the Klein-Fock equation speci�ed for cylindric parabolic coordinates:[
− 1

c2
∂2

∂t2
+

∂2

∂z2
+

1

u2 + v2
(
∂2

∂u2
+

∂2

∂v2
)− m2c2

~2

]
Ψ = 0 , (6)

After separating the variables (t, z) from (u, v) by the substitution
Ψ(t, u, v, φ) = e−iεt/~ eipz/~ U(u) V (v) one gets[

1

U

d2U

du2
+ (

ε2

~2c2
− m2c2

~2
− p2

~2
) u2

]
+

[
1

V

d2V

dv2
+ (

ε2

~2c2
− m2c2

~2
− p2

~2
) v2

]
= 0 . (7)

In the following, the notation is used

λ2 = (
ε2

~2c2
− m2c2

~2
− p2

~2
) , [λ] =

1

meter
.

Introducing two separation constants a and b (a + b = 0), from (7) we can derive two separate equations in
variables u and v respectively:

d2U

du2
+ ( λ2 u2 − a ) U = 0 ,

d2V

dv2
+ ( λ2 v2 − b ) V = 0 . (8)

Canonical form of di�erential equation of parabolic cylinder (type 2, [39]) is

d2F

dξ2
+ (

ξ2

4
− α ) F = 0 . (9)

Transition in equations ( (8) to the canonical form is reached through the use of dimensionless variables)

√
2λ u → u ,

a

2λ
→ a ,

√
2λ v → v ,

b

2λ
→ b . (10)
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So that equations (8) will take the form:

d2U

du2
+ (

u2

4
− a ) U = 0 ,

d2V

dv2
+ (

v2

4
− b ) V = 0 . (11)

As known, solutions of equation (9) can be found as a series:

F (ξ) = c0 + c1ξ + c2ξ
2 +

∑
k=1,2,...

c2k+1ξ
2k+1 +

∑
k=1,2,...

c2k+2ξ
2k+2; (12)

in (12) the terms of even and odd powers of ξ are distinguished. After substituting (12) into (9) we get:c22 +
∑

k=1,2,...

c2k+1(2k + 1)(2k)ξ2k−1+

∑
k=1,2,...

c2k+2(2k + 2)(2k + 1)ξ2k

+

1

4

c0ξ2 + c1ξ
3 + c2ξ

4 +
∑

k=1,2,...

c2k+1ξ
2k+3+

∑
k=1,2,...

c2k+2ξ
2k+4

−
−α

c0 + c1ξ + c2ξ
2 +

∑
k=1,2,...

c2k+1ξ
2k+1+

∑
k=1,2,...

c2k+2ξ
2k+2

 = 0,

(13)

or separating terms of even and odd powersc22 +
∑

k=1,2,...

c2k+2(2k + 2)(2k + 1)ξ2k +
1

4
c0ξ

2 +
1

4
c2ξ

4+

+
1

4

∑
k=1,2,...

c2k+2ξ
2k+4 − αc0 − αc2ξ2 − α

∑
k=1,2,...

c2k+2ξ
2k+2


even

+

+

 ∑
k=1,2,...

c2k+1(2k + 1)(2k)ξ2k−1 +
1

4
c1ξ

3 +
1

4

∑
k=1,2,...

c2k+1ξ
2k+3−

−αc1ξ − α
∑

k=1,2,...

c2k+1ξ
2k+1


odd

= 0,

(14)
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and further [
ξ0(2c2 − αc0) + ξ2(c44× 3 +

c0
4
− αc2) + ξ4(c66× 5 +

c2
4
− αc4)+

+
∑

k=3,4,...

c2k+2(2k + 2)(2k + 1)ξ2k

+
1

4

∑
k=1,2,...

c2k+2ξ
2k+4 − α

∑
k=2,3,...

c2k+2ξ
2k+2


even

+

[
ξ(c33× 2− αc1) + ξ3(c55× 4 +

c1
4
− αc3)+

+
∑

k=3,4,...

c2k+1(2k + 1)(2k)ξ2k−1

+
1

4

∑
k=1,2,...

c2k+1ξ
2k+3 − α

∑
k=2,3,...

c2k+1ξ
2k+1


odd

= 0. (15)

From this it follows[
ξ0(2c2 − αc0) + ξ2(c44× 3 +

c0
4
− αc2) + ξ4(c66× 5 +

c2
4
− αc4)+

+
∑

n=3,4,...

(
c2n+2(2n+ 2)(2n+ 1) +

1

4
c2n−2 − αc2n

)
ξ2n

]
even

+

[
ξ(c33× 2− αc1) + ξ3(c55× 4 +

c1
4
− αc3)+

+
∑

n=3,4,...

(
c2n+1(2n+ 1)(2n) +

1

4
c2n−3 − αc2n−1

)
ξ2n−1

]
odd

= 0 . (16)

Setting each coe�cient at a ξk equal to zero one derives two independent groups of recurrent relations: even

ξ0 : 2 c2 − α c0 = 0 ,

ξ2 : c4 4× 3 + c0
4 − α c2 = 0 ,

ξ4 : c6 6× 5 + c2
4 − α c4 = 0 ,

n = 3, 4, ..., ξ2n : c2n+2(2n+ 2)(2n+ 1) + 1
4 c2n−2 − α c2n = 0 ;

(17)

odd

ξ1 : c3 3× 2− α c1 = 0 ,

ξ3 : c5 5× 4 + c1
4 − α c3 = 0 ,

n = 3, 4, ..., ξ2n−1 : c2n+1(2n+ 1)(2n) + 1
4 c2n−3 − α c2n−1 = 0 .

(18)

Taking into account the absence of any connection of equations (17) and (18) one can construct two linearly
independent solutions (even and odd respectively):

even

F1(ξ2) = 1 + a2
ξ2

2!
+ a4

ξ4

4!
+ ...,

a2 = α , a4 = α2 − 1

2
, c6 = α3 − 7

2
α ,

n = 3, 4, ... : a2n+2 = α a2n −
(2n)(2n− 1)

4
a2n−2 ;
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(19)

odd

F2(ξ) = ξ + a3
ξ3

3!
+ a5

ξ5

5!
+ ... ,

a3 = α , a5 = α2 − 3

2
,

n = 3, 4, ... : a2n+1 = α a2n−1 −
(2n− 1)(2n− 2)

4
a2n−3 .

(20)

The set of basis wave functions for Klein-Fock particle, the role and
manifestation of vector and spinor space structures respectively

Having combined two previous solutions F1 and F2, we can obtain four types of the wave functions, solutions of
the Klein-Fock equation in cylindrical parabolic coordinates (we will change the notation: F1 =⇒ E; F1 =⇒ O
:

(even⊗ even) : Φ++ = E(a, u2) E(−a, v2),

(odd⊗ odd) : Φ−− = O(a, u) O(−a, v ) ,

(even⊗ odd) : Φ+− = E(a, u2) O(−a, v ) ,

(odd⊗ even) : Φ−+ = O(a, u) E(−a, v2) .

(21)

Having in mind relation between (u, v) and (x, y), one readily notes behavior of the wave functions con-
structed at the point x = 0, y = 0 (variable z is omitted):

(even ⊗ even) : Ψ++(x = 0, y = 0) 6= 0 ,
(odd⊗ odd) : Ψ−−(x = 0, y = 0) = 0 ,
(even⊗ odd) : Ψ+−(x > 0, y = 0) = 0 ,
(odd⊗ even) : Ψ−+(x < 0, y = 0) = 0 .

(22)

Now let us consider which restrictions for the wave functions Ψ are imposed by the requirement of single-
valued ness. Two peculiarities in parameterizing are substantial:

v = 0 : x = +
u2

2
≥ 0, y = 0; u = 0 : x = −v

2

2
≤ 0, y = 0 .

(23)

-x

6
y

- x

6
y

Fig 4. The peculiarities in parametrization

The above four solutions (21) behave in peculiar regions
as follows: (even⊗ even) :
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Φ++(a;u = 0, v) = E(a, u2 = 0)E(−a, v2) =

E(−a, v2) = + Φ++(a;u = 0,−v) ,

Φ++(a; +u, v = 0) = E(a, u2) E(−a, v2 = 0) =

E(+a, u2) = + Φ++(a;−u, v = 0) ,

(odd⊗ odd) :

Φ−−(a;u = 0,+v) = O(a, u = 0) O(−a, v ) = + Φ−−(a;u = 0,−v) = 0

Φ−−(a;u, v = 0) = O(+a, u) )O(−a, v = 0 ) = + Φ−−(a;−u, v = 0) = 0 ,

(even⊗ odd) :

Φ+−(a;u = 0,+v) = E(a, u2 = 0) O(−a, v ) =

O(−a, v ) = − O(−a,−v ) = − Φ+−(a;u = 0,−v) ,

Φ+−(a;u, v = 0) = E(+a, u2) O(−a, v = 0 ) = Φ+−(a;−u, v = 0) = 0 ,

(odd⊗ even) :

Φ−+(a;u = 0,+v) = O(+a, u = 0)E(−a, v2) = Φ−+(a;u = 0,−v) = 0 ,

Φ−+(a; +u, v = 0) = O(+a, u) E(−a, v2 = 0) =

O(+a, u) = −O(a,−u) = − Φ−+(a;−u, v = 0) .

(24)

Taking in mind the Fig.1 and the Fig. 3, one cam immediately conclude: solutions Φ of the types (++) and
(−−) are single-valued in the space with vector structure, whereas the solutions of the types (+−) and (−+)
are not single-valued in space with vector structure, so these types (+−) and (−+) must be rejected. However,
these solutions (+−) and (−+) must be retained in the space with spinor structure.

That dividing of the basis wave functions into two subsets may be formalized mathematically with the help
of special discrete operator acting in spinor space:

δ̂ =

∣∣∣∣ −1 0
0 −1

∣∣∣∣ , δ̂

∣∣∣∣ uv
∣∣∣∣ =

∣∣∣∣ −u−v
∣∣∣∣ . (25)

It is easily veri�ed that solutions single-valued in the vector space model are eigenfunctions of δ with
eigenvalue δ = +1:

δ̂ Φ++(a;u, v) = + Φ++(a;u, v) , δ̂ Φ−−(a;u, v) = + Φ−−(a;u, v) , (26)

and additional ones acceptable only in the spinor space model, are eigenfunction with the eigenvalue δ = −1:

δ̂ Φ+−(a;u, v) = − Φ+−(a;u, v) , δ̂ Φ−+(a;u, v) = − Φ−+(a;u, v) . (27)

When using the spinor space model, two set (u, v) and (−u,−v) represent di�erent geometrical points in the
spinor space, so the requirement of single valuedness as applied in the case of spinor space does not presuppose
that the values of the wale functions must be equal in the points (u, v) and (−u,−v):

Φ(u, v) = Φ((x, y)(1)) 6= Φ(−u,−v) = Φ((x, y)(2)) . (28)

Now let us add some details more. In general, the vector plane (x, y) allows three inversion operations to
which one can relate six discrete operations in spinor "plane" (u, v):

(x, y) =⇒ (x,−y), π̂ =

∣∣∣∣ +1 0
0 −1

∣∣∣∣ , π̂′ = δ̂ π̂ = −π̂ ,

(x, y) =⇒ (−x, y), ω̂ =

∣∣∣∣ 0 +1
+1 0

∣∣∣∣ , ω̂′ = δ̂ ω̂ = −ω̂ ,

(x, y) =⇒ (−x,−y), R̂ =

∣∣∣∣ 0 −1
+1 0

∣∣∣∣ , R̂′ = δ̂ R̂ = −R̂ . (29)
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One can easily construct eigenfunctions of these discrete operations (29) as well. For instance, let us consider
the operator R̂ = ω̂ π̂. Noting two identities

R̂Φ++(a;u, v) = R̂E(a, u2)E(−a, v2) =

E(a, v2)E(−a, u2) = Φ++(−a;u, v), (30)

R̂Φ−−(a;u, v) = R̂O(a, u)O(−a, v) =

O(a,−v)O(−a, u) = −Φ−−(−a;u, v). (31)

one can easily construct the eigen-functions of the operator R̂ (arguments are omitted):

Φ
(R=±1)
++ = Φ++(a) ± Φ++(−a) , R̂ Φ

(R=±1)
++ = ± Φ

(R=±1)
++ ; (32)

Φ
(R=±1)
−− = Φ−−(a) ∓ Φ−−(−a) , R̂ Φ

(R=±1)
−− = ± Φ

(R=±1)
−− . (33)

In the same way, taking into account the identities

R̂ Φ+−(a;u, v) = R̂ E(a, u2) O(−a, v) =

E(a, v2) O(−a, u) = + Φ−+(−a;u, v), (34)

R̂ Φ−+(a;u, v) = R̂ O(a, u) E(−a, v2) =

O(a,−v) E(−a, u2) = − Φ+−(−a;u, v) , (35)

one can easily construct eigenfunctions with complex eigenvalues:

ϕ(R=∓i) = Φ+−(a)± i Φ−+(−a) , R̂ ϕ(R=±i) = ± i ϕ(R=±i) ;

(36)

ϕ(R=∓i)(−a) = Φ+−(−a)± i Φ−+(+a) , R̂ ϕ(±i)(−a) = ± i ϕ(∓i)(−a) .

(37)

Thus, there exist quite a de�nite classi�cation of the Klein-Fock solutions in cylindrical parabolic coordinates
in terms of quantum numbers, eigenvalues of the following operator (an explicit form Â will be given below)

i
∂

∂t
=⇒ ε , −i ∂

∂z
=⇒ p , Â =⇒ a , (δ̂, R̂) =⇒ (δ = ±1, R = ±1) .

(38)

As a base to classify solutions of the Klein-Fock equation, instead of (δ̂, R̂) one might have taken other two

operator: for instance, δ̂ and ω̂. Then, allowing for the identities

ω̂ Φ++(a;u, v) = ω̂ E(a, u2) E(−a, v2) =

E(a, v2) E(−a, u2) = Φ++(−a;u, v) , (39)

ω̂ Φ−−(a;u, v) = ω̂ O(a, u) O(−a, v) =

O(a, v) O(−a, u) = Φ−−(−a;u, v) . (40)

We can construct eigenfunctions of the operator ω̂:

Φ
(ω=±1)
++ = Φ++(a) ± Φ++(−a) , ω̂ Φ

(ω=±1)
++ = ± Φ

(ω=±1)
++ ; (41)

Φ
(ω=±1)
−− = Φ−−(a) ± Φ−−(−a) , ω̂ Φ

(ω=±1)
−− = ± Φ

(ω=±1)
−− ) . (42)
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In the same manner, for additional solutions we have

ω̂ Φ+−(a;u, v) = ω̂ E(a, u2) O(−a, v) =

E(a, v2) O(−a, u) = + Φ−+(−a;u, v), (43)

ω̂ Φ−+(a;u, v) = ω̂ O(a, u) E(−a, v2) =

O(a, v) E(−a, u2) = Φ+−(−a;u, v) , (44)

therefore, the eigenfunctions may be given as

ϕ(ω=±1) = Φ+−(a)± Φ−+(−a) , ω̂ ϕ(ω=±1) = ± ϕ(ω=±1) ; (45)

ϕ(ω=±1) = Φ+−(−a)± Φ−+(+a) , ω̂ ϕ(ω=±1) = ± ϕ(ω=∓1) ; (46)

It is easy to obtain some classi�cations with the help of (δ̂, π̂). Indeed,

π̂ Ψ++(a;u, v) = π̂ F1(a, u2) F1(−a, v2) =

F1(a, u2) F1(−a, v2) = + Ψ++(a;u, v) ,

π̂ Ψ−−(a;u, v) = π̂ F2(a, u) F2(−a, v) =

F2(a,−u) F2(−a, v) = − Ψ−−(a;u, v) ,

π̂ Ψ+−(a;u, v) = π̂ F1(a, u2) F2(−a, v) =

F1(a, u2) F2(−a, v) = + Ψ+−(a;u, v) ,

π̂ Ψ−+(a;u, v) = π̂ F2(a, u) F1(−a, v2) =

F2(a,−u) F1(−a, v2) = − Ψ−+(a;u, v) . (47)

Remembering eqs. (25) � (28), one can conclude that the basic solutions are eigenfunctions of two

discrete operators δ̂ and π̂.
Boundary properties of the wave functions constructed can be illustrated by the schemes:

Ψ+ +

- x

6
y

�
�	

non-zeror
Ψ− −

- x

6
y

�
�	

zeror

Ψ+ −

-
x

6y

�
�	 zeror+ + + +

− − − −

Ψ− +

- x

6y

@
@R

zero r+ + + +
− − − −

Fig 7. Boundary behavior of the wave functions in (x, y)-plane

Orthogonality and completeness of the
bases for vector and spinor space models

Now let us consider the scalar multiplication∫
Ψ∗µ′ Ψµ

√
−g dtdzdudv . (48)
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of the basic wave functions constructed:

Ψ++(ε, p, a) = eiεt eipz Φ++(a;u, v) = eiεt eipz E(+a, u2) E(−a, v2) ,

Ψ−−(ε, p, a) = eiεt eipz Φ−−(a;u, v) = eiεt eipz O(+a, u) O(−a, v ) ,

Ψ+−(ε, p, a) = eiεt eipz Φ+−(a;u, v) = eiεt eipz E(+a, u2) O(−a, v ) ,

Ψ−+(ε, p, a) = eiεt eipz Φ−+(a;u, v) = eiεt eipz O(+a, u) E(−a, v2) . (49)

µ and µ′ stand for generalized quantum numbers. In the �rst place, interesting integrals are (arguments (a;u,v)
are omitted):

in vector space

I0 =

∫ +∞

0

dv

∫ +∞

−∞
du Φ∗++ Φ−− (u2 + v2), (50)

in spinor space

I1 =

∫ +∞

−∞
dv

∫ +∞

−∞
du Φ∗++ Φ−− (u2 + v2) ,

I2 =

∫ +∞

−∞
dv

∫ +∞

−∞
du Φ∗+− Φ−+ (u2 + v2) ,

I3 =

∫ +∞

−∞
dv

∫ +∞

−∞
du Φ∗++ Φ+− (u2 + v2) ,

I4 =

∫ +∞

−∞
dv

∫ +∞

−∞
du Φ∗++ Φ−+ (u2 + v2) ,

I5 =

∫ +∞

−∞
dv

∫ +∞

−∞
du Φ∗−− Φ+− (u2 + v2) ,

I6 =

∫ +∞

−∞
dv

∫ +∞

−∞
du Φ∗−− Φ−+) (u2 + v2) . (51)

Integral I0 in vector space vanishes identically

I =

∫ +∞

0

dv

∫ +∞

−∞
duE(+a, u2)E(−a, v2)×

O(+a, u)O(−a, v)(u2 + v2) =

=

∫ +∞

0

dv

∫ +∞

−∞
duE(+a, u2)O(+a, u)×

E(−a, v2);O(−a, v)(u2 + v2) ≡ 0,

because integration in variable u ∈ (−∞,+∞) is done for an odd function of u in symmetrical region u ∈
(−∞,+∞). By the same reasons, integral I1 in spinor space vanishes as well.

The integral I2 vanishes

I2 =

∫ +∞

−∞
dv

∫ +∞

−∞
du E(+a, u2) O(−a, v )

O(+a, u) E(−a, v2) (u2 + v2) ≡ 0 ,

because integration is done for an odd function in v, u-variables, in symmetrical regions v ∈ (−∞,+∞) and
u ∈ (−∞,+∞). Integral I3 vanishes

I3 =

∫ +∞

−∞
dv

∫ +∞

−∞
du E(+a, u2) E(−a, v2)

E(+a, u2) O(−a, v ) u2 + v2) ≡ 0 ,
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because integration is done for odd function of v variable, in the symmetrical region v ∈ (−∞,+∞). Integral
I4 vanishes

I4 =

∫ +∞

−∞
dv

∫ +∞

−∞
du E(+a, u2) E(−a, v2)

O(+a, u) E(−a, v2) (u2 + v2) ≡ 0 ,

because integration is done for an odd function of U in symmetrical region u ∈ (−∞,+∞). Integral I5 vanishes

I5 =

∫ +∞

−∞
dv

∫ +∞

−∞
du O(+a, u) O(−a, v )

E(+a, u2) O(−a, v ) (u2 + v2) ≡ 0 ,

because one integrates an odd function of u in symmetrical region u ∈ (−∞,+∞). Integral I6 vanishes

I6 =

∫ +∞

−∞
dv

∫ +∞

−∞
du O(+a, u) O(−a, v )

O(+a, u) E(−a, v2) (u2 + v2) ≡ 0 ,

because one integrates an odd function of v in symmetrical region v ∈ (−∞,+∞).
Thus, vanishing integrates I0, I1...I6 from (50),(51) shows that the formulas (49) provide us with orthogonal

basis for Hilbert space Ψ(unv, z), where (u, v, z) belong to an extended (spinor) space model.

On matrix elements of physical observables, in vector and spinor space
models

The question of principle is how transition from vector to spinor space model can in�uence result of calcu-
lation of matrix elements for physical quantities. As an example, let us consider matrix elements for operator
of coordinates: One may calculate matrix elements of basic initial coordinates u, v or there 2-order derivative
coordinates x, y:

(u, v) or x =
u2 − v2

2
, y = uv . (52)

With the use of the above rules � integral for an odd function in symmetrical region vanishes identically � one
can derive simple section rules for matrix elements (for simplicity we restrict ourselves only to the degeneracy
in discrete quantum number ++,−−,+−,−+ taking ε, p, a �xed):

in vector space

xµ′,µ ++ −−

++ 6= 0 0
−− 0 6= 0

,

yµ′,µ ++ −−

++ 0 6= 0
−− 6= 0 0

in spinor space

xµ′,µ ++ −− +− −+

++ 6= 0 0 0 0
−− 0 6= 0 0 0
+− 0 0 6= 0 0
−+ 0 0 0 6= 0

,

yµ′,µ ++ −− +− −+

++ 0 6= 0 0 0
−− 6= 0 0 0 0
+− 0 0 0 6= 0
−+ 0 0 6= 0 0

The same for coordinates u and v looks: in vector space

uµ′,µ ++ −−

++ 0 6= 0
−− 6= 0 0

, ,

vµ′,µ ++ −−

++ 6= 0 0
−− 0 6= 0
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in spinor space

uµ′,µ ++ −− +− −+

++ 0 0 0 6= 0
−− 0 0 6= 0 0
+− 0 6= 0 0 0
−+ 6= 0 0 0 0

,

vµ′,µ ++ −− +− −+

++ 0 0 6= 0 0
−− 0 0 0 6= 0
+− 6= 0 0 0 0
−+ 0 6= 0 0 0

Author are thankful to Prof. Timur Kamalov, Co-chairman of the III International Conference on Theoretical
Physics, June 24�28, 2013, Moscow for invitation to participate the conference, hospitality in Moscow Open
University and �nancial support.
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Abstract: In this paper it is presented an interesting overview concerning the theoretical e�orts in the
understanding of phenomena at nanoscale; starting by the Drude model we arrive to the last appeared
Drude-Lorentz-like models, in the case of relativistic motion of carriers in nano-bio-structures. After
this, it will focused in particular about the analysis of the velocities correlation function of a new
appeared model, which has a wide scale range of applicability; in this contest the nanoscale will be
considered. The theoretical framework is performed, so as examples of application.
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Introduction

The charge transport is one of the most important aspects at nanoscale; it can be in�uenced by particles
dimensions and presents di�erent characteristics with respect to those of bulk. In mesoscopic systems the
mean free path of charges, related to scattering phenomena, can become larger than the particle dimensions;
the transport depends therefore by dimensions and in principle corrections of the transport bulk theories are
possible, for considering this phenomenon. Also in a thin �lm, the smallest nanostructure dimension can be less
than the free displacement, requiring so modi�cations to existing theoretical transport models. At theoretical
level, various techniques have been used for the knowledge of transport phenomena, in particular analytical
descriptions based on transport equations and numerical approaches, as classical and quantum Monte Carlo
simulations.

Recently it has appeared a new theoretical approach, based on the complete Fourier transform of the
frequency-dependent complex conductivity of the studied system [1,2]. With this approach it is possible to
calculate exactly the analytical expressions of the most important transport functions, i.e. the velocities cor-
relation function < ~v (t) · ~v (0) >T , the mean square deviation of position R2(t) and the di�usion coe�cient
D(t) = 1/2 (dR2(t)

/
dt).

One of the most important experimental technique for the study of the frequency-dependent complex-valued
far-infrared photoconductivity σ (ω) is the Time-resolved THz Spectroscopy (TRTS), an ultrafast non-contact
optical probe; data are usually �tted via Drude-Lorentz, Drude-Smith [3] and E�ective Medium Models [4].

An interesting overview of the fundamental utilized models will be illustrated; starting by the Drude model,
we consider its extensions, arriving to new results by a recently appeared Drude-Lorentz-like model, which
involves the quantum-relativistic reality.

Past and recent considered models

In relation to metals, scientists thought in terms of models in which the electrons are relatively free and can
move under the in�uence of electric �elds. Historically two models of the elementary metals theory were born:

a) the �Drude model�, published in 1900 and based on the kinetic theory of an electron gas in a solid [5,6].
It was assumed that electrons have the same average kinetic energy Em;

b) a variation of the Drude model, integrated with the foundations of quantum mechanics, called �Sommerfeld
model� [7].
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In the Drude model the assumption of a mechanism of collisions among ions and electrons allows the thermal
equilibrium for the electrons, implying the application of the kinetic theory of gases. The free electrons have only
kinetic energy, therefore the average energy is Em = (3/2) kB T , where kB is the Boltzmann's constant. The
correlation with an average quadratic velocity vm is possible through the relation Em = (3/2) kB T = mv2

m/2,
where m is the free electron mass. At environment temperature is vm of order of 107 cm/s and represents the
average thermal electrons velocity. It was assumed also that the time of di�raction is very small with respect to
every other considered time. Through such collisions, electrons acquire a thermal equilibrium corresponding to
the temperature T of the metal. The possible presence of a constant electric �eld determines an extra average
velocity (the �drift velocity�) given by vd = − (eE/m) t. The relaxation time τ is de�ned as the average time

between two collisions, getting a mean free path lmfp = vm τ . The current density is ~J = σcond ~E, where
σcond is the electric conductivity. This result has been an important goal of the classic theory in relation to the
metals conduction.

The Lorentz model, published in 1905, is a re�ning of the Drude model containing statistical aspects [8].
Electrons are considered as free charges, with charge �-e� and described by a maxwellian velocity distribution.
An electron gas in a spatial region with a constant electric �eld has a constant drift velocity, corresponding to a
current density ~J , which is proportional to the applied �eld ~J = σ0

~E, with σ0 = n e2 τ /m (n is the electron
density). Estimating the relaxation time τ , Drude and Lorentz obtained conductivity values in good accordance
with experiments. In presence of an electric �eld of the form E (t) = E0 e

− i ω t, the complex conductibility is
writable as σω = σ0 / (1 − i ω τ). Such model, known as �Drude-Lorentz model�, received some success, but
has also underlined serious di�culties.

Starting by the Drude-Lorentz model, it is possible to obtain the velocities correlation function, the quadratic
average distance crossed by the charges as a function of time and examine directly the possible compatibility
with the Einstein relation D/µ = kB T / e, where D is the di�usion coe�cient and µ the mobility [8].

Considerable variations of the Drude-Lorentz model were made in the following years; the most used are:

c) the �Maxwell-Garnett model� (MG): in this model the dielectric function is given by a Drude term with
an additional �vibrational� contribution at a �nite frequency ωo, which leads to a dielectric function of the form:

ε//(ω) = 1 −
ω2
p

ω (ω + i/τ)
+

ω2
s

ω2
0 − ω2 − i γ ω

(1)

where the amplitude ωs, the resonant frequency ω0 and the damping constant γ are material-dependent con-
stants. The MG model is used for describing an isotropic matrix, which contains spherical isolated inclusions,
such as metal particles dispersed in a surrounding host matrix [9,10].

d) The �E�ective Medium Theories� (EMTs): in this case the electromagnetic interactions between pure
materials and host matrices are approximately taken into account. The commonly used EMTs include the MG
model and the �Bruggeman model� (BR), particular variation of the MG model [11,12].

In the THz regime, the dielectric function εm(ω) consists normally of contributions of the high-frequency
dielectric constant, conduction free electrons and lattice vibration:

εm(ω) = ε∞ −
ω2
p

ω2 + i γ ω
+
∑
j

εstj ω
2
TOj

ω2
TOj

− ω2 − iΓj ω
(2)

In Eq. (2) ε∞ is the high-frequency dielectric constant, the second term describes the contribution of free
electrons or plasmons and the last term is related to optical phonons.

If the response originated mainly by the contribution of free electrons or plasmons, it is usually adopted the
Drude model, in the form:

εm(ω) = ε∞ −
ω2
p

ω2 + i γ ω
(3)

describing with good approximation the dielectric properties of metals and semiconductors. If the interaction
of a radiation �eld with the fundamental lattice vibration plays a dominant role and results in absorption
of electromagnetic wave, due to the creation or annihilation of lattice vibration, the dielectric function εm(ω)
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mainly consists of the contributions of the lattice vibrations, expressed by the classical pseudo-harmonic phonon
model in the �rst approximation:

εm(ω) = ε∞ +
εst ω

2
TO

ω2
TO − ω2 − i γ ω

(4)

e) The �Smith model�: Smith started by the response theory for the optical conductivity, considering an electric
�eld impulse applied to a system, in order to examine the answer with respect to the current [3,13]. The real
part of σ (ω) results:

∞∫
0

Reσ (ω) dω =
π

2
j (0) =

ω2
p

8
(5)

If the initial current decays exponentially to its initial value with relaxation time τ , it is possible to write:

j (t)/j (0) = exp (− t / τ ) (6)

from which the standard Drude formula is obtainable:

σ (ω) = (n e2 τ /m) / (1 − i ω τ) (7)

Eq. (7) can be considered as the �rst term of a series of the form:

j (t)/j (0) = exp (− t / τ )

[
1 +

∞∑
n= 1

cn (t/τ)
n
/ n !

]
(8)

The cn factors hold into account of the original electrons velocity, remained after the n-th collision. The
analytical form of the complex conductivity is:

σ (ω) =
n e2 τ

m (1 − i ω τ)

[
1 +

∞∑
n= 1

cn
(1 − i ω τ)n

]
(9)

A new appeared interesting model

A recent theoretical analytical formulation showed to �t very well with experimental scienti�c data and o�ers
interesting new predictions of various peculiarities in nanostructures [1,2,14-21]. The model contains a gauge
factor, which permits its use to study the dynamics of reality processes by sub-nanolevel to macrolevel, presenting
oscillations in time, so as di�usivity characteristics in time [22].

The model is based on the complete Fourier transform of the frequency-dependent complex conductivity
σ (ω) of the system, which can be deduced from linear response theory (Green-Kubo formula) [23,24]:

σβα(ω) = (e2
/
~V )

∫ ∞
0

dteiωt
∫ β

0

dλ < ~vα(t− iλ)~vβ(0) > (10)

By inversion of Eq. (10) it is possible to �nd the velocities correlation function < ~v (t) · ~v (0) >T inside the
integral. The presence of an integration from 0 to ∞ is however a problem for the analytical inversion, but
it can be overcame evaluating the integral on the entire time axis (- ∞, + ∞). Considering the real part of
the complex conductivity in Eq. (10), the extension to the entire time axis is possible and a complete Fourier
transform can be performed, obtaining directly real velocities. The integral can be resolved in the complex
plane considering a Cauchy integration; the velocities correlation function is evaluated exactly by the residue
theorem [25]. With < ~v (t) · ~v (0) >T it is possible to obtain the analytical form of R2(t) and D(t) .

The real part of σ (ω) results:

Reσβα(ω) =
e2

2V kBT

∫ +∞

−∞
dt
〈
~v α(0)~v β(t)

〉
T
e−iωt (11)
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The integral in Eq. (11) spans the entire t-axis, so we can perform the complete inverse Fourier transform. It
gives:

< ~vα (0) ~vβ (t) >T =
kB T V

π e2

+∞∫
−∞

dω Reσβα(ω) ei ω t (12)

The new introduced key idea is the possibility to perform a complete inversion of Eq. (12) on temporal scale, i.e.
considering the entire time axis (-∞, +∞), not the half time axis (0, +∞), as usually considered in literature
[26]. It has performed the classical and the quantum version of the indicated model [1,2,14]; currently the focus
is on the relativistic version, of which new results are presented below.

Relativistic motion in nanostructures

The starting point is the motion equation of a particle travelling in a nanostructure. If we consider relativistic
velocity, the considered dynamics law is:

d

dt
(mpart ~v) =

∑
i

~Fi (13)

We choose for simplicity the motion along the x-axis; about the forces acting on particle, it has been considered
an outer passive elastic-type force of the form Fel = K x, a passive friction-type force of the form Ffr = λ ẋ,
depending by velocity and with λ = mpart/τ , and an outer oscillating electric �eld E = eE0 e

− i ω t.
After analytical calculation, Eq. (13) becomes:

m0 a γ
(
1 + (β γ)2

)
= − k x − λ ẋ + eE0 e

− i ω t (14)

with β = v/c and γ = 1
/√

1 − β2.

Considering for Eq. (14) solutions of the form:

x = x0 e
− i ω t (15)

the real part of the complex conductivity results:

Reσ =
N e2

m0 τ

(
ω2

ω2 γ2

τ2 + (ω2
0 − γ (1 + β2 γ2)ω2)2

)
(16)

With the procedure used in the classical case [2], searching values of ω which vanish the denominator of Eq.
(16), it obtains solutions of the form:

ω(R/I)rel =
1

2 τ ρ

i ± √4 ρω2
0 τ

2

γ
− 1

 (17)

with ρ = 1 + β2 γ2 = γ2. We have three cases in relation to the sign of the quantity ∆ =
4 ρω2

0 τ
2

γ − 1:
∆rel > 0, ∆rel = 0, ∆rel < 0 .

The velocities correlation function 〈~v (0) · ~v (t)〉 has the following analytical form:

∆rel > 0

〈~v (0) · ~v (t)〉 =

(
kB T

m0

) (
1

γ2 ρ

)
exp

(
− t

2 τ ρ

)
(

cos

(
αRrel
2 ρ

t

τ

)
− 1

αRrel
sin

(
αRrel
2 ρ

t

τ

))
(18)
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with αRrel =
√

4 ρω2
0 τ

2

γ − 1 ;

∆rel < 0

〈~v (0) · ~v (t)〉 =
1

2

(
kB T

m0

) (
1

γ2 ρ

) (
1

αIrel

)
×

×
[
(1 + αIrel) exp

(
− (1 + αi I)

2 ρ

t

τ

)
−

(1 − αIrel) exp

(
− (1 − αi I)

2 ρ

t

τ

)]
(19)

withαIrel =
√

1 − 4 ρω2
0 τ

2

γ .

The case ∆rel = 0 reduces to relativistic Drude model.

Examples of application

As example of application it has considered the motion of electrons, at di�erent velocities, in a nanostructure
of ZnO [27-29]. We underline that the model holds for charged particles in general, not necessarily electrons.
Changing the nanomaterial, it will consider the right e�ective mass and relaxation time. Data to be implemented
in Eqs (18,19) are resumed in Table 1.

v (cm/s) v/c 1/ρ
1 +αIRel

2 ρ (a)

107 0.334.10−3 0.999 0.749
108 0.334.10−2 0.999 0.749
109 0.334.10−1 0.998 0.748
1010 0.334 0.888 0.666
2.1010 0.834 0.304 0.228

1 +αIRel
2 ρ (b)

αRRel
2 ρ

(20)

αRRel
2 ρ (d)

0.549 2.497 9.99
0.549 2.497 9.99
0.549 2.495 9.98
0.488 2.22 8.88
0.167 0.76 3.04

Table 1. Data related to the variation of the carrier velocity v inside the nanostructure.

(a): αIRel = 0.5; (b): αIRel = 0.1; (20): αRrel = 5; (d): αRrel = 20.

Fig. 1 represents the evolution of 〈~v (0) · ~v (t)〉 in time for a �xed value of αRrel in relation to three di�erent
velocities of electrons, with τ = 0.84 · 10− 13 s and T = 300K [27-30]. The classical �Drude� velocity v =
107 cm/s implies a negligible variation in mass for the electrons. We note that the increase in velocity tends to
raise the wavelength of the damped oscillation, reducing its amplitude.

In Fig. 2 the same situation is presented, but with a di�erent value of the parameter αRrel . The initial more
marked compression of the curve (blue solid line) obeys to the same variation indicated in the previous case.

In Figs 3 and 4 the parameter αIrel has been considered. We note as the typical Smith behaviour of
〈~v (0) · ~v (t)〉 tends to become negative in longer times with respect to the classical case and the curves approach
the x-axis when the velocity of the carrier increases.
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Figure 1: 〈~v (0) · ~v (t)〉 vs t for �xed value αRrel = 5; the considered velocity of the carrier is v = 107 cm/s
(blue solid line), v = 1010 cm/s (red dashed line) and v = 2 · 1010 cm/s (green dots line)

Figure 2: 〈~v (0) · ~v (t)〉 vs t for �xed value αRrel = 20; the considered velocity of the carrier is v = 107 cm/s
(blue solid line), v = 1010 cm/s (red dashed line) and v = 2 · 1010 cm/s (green dots line)

Figure 3: 〈~v (0) · ~v (t)〉 vs t for �xed value αIrel = 0.5; the considered velocity of the carrier is v = 107 cm/s
(blue dashed line) (superposed to the red dots line, representing the classical case), v = 1010 cm/s (violet
dot-dashed line) and v = 2.5 · 1010 cm/s (clear blue solid line)
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Figure 4: 〈~v (0) · ~v (t)〉 vs t for �xed value αIrel = 0.1; the considered velocity of the carrier is v = 107 cm/s
(blue dashed line) (superposed to the red dots line, representing the classical case), v = 1010 cm/s (violet
dot-dashed line) and v = 2.5 · 1010 cm/s (clear blue solid line)

Conclusions

In this work it has been initially considered an overview related to the theoretical formulations regulating the
dynamics at nanoscale.

Starting by the Drude model, we arrived to an interesting Drude-Lorentz-like model, appeared both in
classical and in quantum form, tested in the last years with good accordance with experimental existing data
[1,2,14�22,31]; new results regarding the relativistic velocities correlation function have been also presented. The
core of the model regards the possibility to obtain the analytical formulation of the most important quantities
concerning the dynamics of a system, through the complete Fourier transform of the real part of the frequency-
dependent complex conductivity σ (ω), extending the integration over time on the entire time axis (-∞, +∞).
This extension is mathematically very elegant, because of the analytical approach, and gives interesting and
new informations about the dynamics of systems through the elaboration of experimental data.

At applied level, we suggest the possibility to a fast/ultrafast injection of carriers in a nanostructure for
possible practical needs of raising the wavelength of the damped oscillation for the velocities correlation function
and reducing its amplitude.

The complete development of the relativistic calculation of R2 andD will provide interesting peculiarities and
new results, like the found time oscillations in velocity at beginning of process for the quantum non-relativistic
version [1,14,16,31], which could be appropriately tested through experimental time-resolved techniques, like
TRTS [32�34].
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Introduction

One of the problems of interpretation of quantum mechanics is how can a particle go through both slits "at the
same time". In the single particle case, this question has an answer: classical electromagnetic �eld corresponds
to a photon being at di�erent places at the same time, yet it makes perfect sense. Conversely, an electron being
in di�erent places at the same time corresponds to �eld ψ that can also be understood as "classical". This
analogy breaks down, however, when we have multiparticle system. How can we have di�erent con�gurations
of particles at the same time is far more di�cult to answer. After all, this would correspond to a wave function
over R3n+1 while classical electromagnetic �eld is a function over R4.

However, what "saves" us in case of string theory is that, due to highly non-trivial topology (handles, and
so forth) string worldsheet forms a network. Now, we can divide a network into sub-networks and assume that
their number is so large that they coarse grain the set of all possible sub-networks one can imagine. In this
case, one can produce a network by simply making a set of decisions as to which sub-network to include and
which to excluse. There is one constraint: each sub-network can be either fully included or fully excluded.
Thus, we include the entire sub-network if and only if we include a given atom of said sub-network. But the
probability amplitude of including of said atom does have classical analogue: its a complex valued temperature
of that atom! Thus, we have a classical de�nition of probability amplitude of including of entire sub-network.
Finally, in order for said de�nition to be consistent, we have to assume that the temperatures of any two atoms
of a given sub-network are the same.

One example of this is the city being the network of streets. An atom is a piece of sand in that city, and the
temperature of an arbitrary piece of sand in that city is the probaiblity of that network of streets being selected.
Since we know the city limits, we know that piece of sand in cremlin selects the entire city of Moscow, rather
than just Cremlin. Furthermore, a piece of sand at the North of Moscow and piece of sand in the South of
Moscow both select exact same network: an entire city of Moscow. Thus, all pieces of sand throughout Moscow
have exact same temperature. The explanation for this is that city of Moscow is being surrounded by insulator;
yet, the heat is free to di�use throughout Moscow.

Now we ran into problem: heat di�usion happens only across the space coordinates. In other words, in case
of Moscow (where both North/South and East/West are "spacelike") we are �ne; but in case of string, where
σ is space and τ is time, we run into di�culty. We reconcile it by saying that the "conventional" idea that τ is
time is "wrong": τ is in fact space! Now, in order to still have causality, we have a new "time" coordinate ξ,
which is altogether absent in "conventional" framework (after all, in case of Moscow we need time t to describe
heat di�usion that would lead to desired equilibrium situation). Thus, we have two "space" coordinates, (σ, τ),
and one "time" coordinate ξ. After that, we impose a set of initial conditions that would result in "correlation"
between ξ and τ , thus explaining the "illusion" of timelike nature of the latter. Without said initial conditions,
ξ and τ are orthogonal, which is why τ is "space".

Let us illustrate the idea by the following example. Suppose we have four sub-networks, A, B, C and D.
Now, suppose sub-network A connects to B and C, and both of those networks connect to D. Finally, suppose
that A corresponds to τ1 < τ < τ2, B and C both correspond to τ2 < τ < τ3 and D corresponds to τ3 < τ < τ4.
Finally, suppose we put heat insulators across the lines τ = τ1, τ = τ2, τ = τ3 and τ = τ4. In other words
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each branch of a network that "happens" to cross one of these lines will be divided by an insulator at that
line. Now, suppose that at a time ξ = ξ1 we put a heat sourse at τ = τ+

1 . In other words the heat source is
displaced in�nitesimally from τ = τ1 insulator towards +τ direction; as a result, the insulator will prevent heat
from di�usion into τ < τ1 terriotory, but it would freely di�use into τ > τ1 region. Now, at time ξ = ξ2, the
heat evens out througout region A, and the common value of that heat is ψ(A). We then introduce new heat
sources, at τ = τ+

2 . The heat sources at A∩B have strength ψ(A)eiS(B) while the ones at A∩C have strength
ψAe

iS(C). As a result, at time ξ = ξ3, the common temperature throughout regions B and C will be

ψ(B, ξ3) = kABψ(A, ξ2)eiS(B) , ψ(C, ξ3) = kACψ(A, ξ2)eiS(C) (1)

And, �nally, at ξ = ξ3, we introduce heat sources at τ = τ+
3 : at the B ∩D and C ∩D parts of the region

the strength of the sources will be ψ(B)eiS(D) and ψ(C)eiS(D), respectively. Then, at ξ = ξ4, the equilibrium
will be reached throughout D with the common value of ψ being

ψ(D, ξ4) = (kBDψ(B) + kCDψ(C))eiS(D) =

ψ(A, ξ2)(kABkBDe
i(S(B)+S(D)) + kACkCDe

i(S(C)+S(D))) (2)

Finally, since ψ(A) has reached equilibrium at ξ = ξ2, we know that

ψ(A, ξ4) = ψ(A, ξ2) (3)

Thus, we can re-write Eq 2 in the form of

ψ(D, ξ4) = ψ(A, ξ4)(kABkBDe
i(S(B)+S(D)) + kACkCDe

i(S(C)+S(D))) (4)

Now, comparing Eq 2 and Eq 4 gives us interesting inside. On the one hand, Eq 2 shows the "timelike"
nature of τ in a sense that τ ∈ (τ3, τ4) is "coupled" to ξ = ξ4 whereas τ ∈ (τ1, τ2) is "coupled" to ξ = ξ2. On the
other hand, Eq 4 shows the "spacelike" nature of τ : both ranges of τ correspond to ξ = ξ4. Yet, it is also clear
why it "falsely appears" that τ is time: the spacelike (!!!) picture at ξ = ξ4 happens to resemple the space-time
(!!!) path integral. The "source" of timelike appearance is initial conditions: in particular, the initial conditions
at τ = τ1, τ = τ2 and τ = τ3 were speci�ed at ξ = ξ1, ξ = ξ2 and ξ = ξ3, respectively. This, together with the
fact that the initial conditions were set at τ+

k instead of τ−k is what makes τ to look like "future" direction.
One thing that might strike the reader is that di�usion equaitons would require (+,+) metric, in contradic-

tion to (+,−) worldsheet metric. The answer to this question is that the "history" as we know it is spacelike
(σ, τ) surface taken at ξ → ∞; thus, the di�usion process and, therefore, (+,+) metric, are not relevent any
more since equilibrium has been reached. On the other hand, (+,−) metric �gures in the equations for S(A),
S(B), S(C) and S(D) above and, therefore, continues to be relevent, leading to the appearance of a single
(+,−) metric. On the other hand, when ξ is �nite, both di�usion as well as S are relevent, thus both metric
take place. This implies that worldsheet symmetry is broken. At the same time, the symmetry of Xµ, given by
ηµν continues to hold. Thus, we have three metrics:

hττ = hττ = 1 , hσσ = hσσ = −1 , eττ = eττ = eσσ = eσσ = 1 (5)

hστ = hστ = hτσ = eτσ = eστ = eστ = eτσ = eτσ = 0 (6)

η00 = η00 = 1 , η11 = η11 = η22 = η22 = η33 = η33 = −1 (7)

ηj0 = ηj0 = η0j = η0j = ηij = ηij = 0 , i 6= 0 , j 6= 0 , i 6= j (8)
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Heat conduction process

Let us now describe di�usion process more explicitly. We will introduce two kinds of "heat": S and ψ. Our
goal is for these two quantities to obey, in ξ →∞, the following:

lim
ξ→∞

ψ(A) ≈ lim
ξ→∞

(
eiS(A)

∑
B≺∗A

ψ(B)

)
(9)

where

lim
ξ→∞

S(σ, τ ; ξ) = lim
ξ→∞

(
1

2πα′

∫
V (σ,τ)

dσ′dτ ′g1/2gαβ∂aX
µ∂bXµ+

+
1

4π

∫
V (σ,τ)

dσ′dτ ′g1/2R+
1

2π

∫
∂V (σ,τ)

ds k

)
(10)

where V (σ, τ) is a sub-string that contains a given point (σ, τ). This is what allows the left hand side to be
a function of a point (σ, τ), thus have a classical meaning and, at the same time, represent the probability
amplitude of a sub-network (or sub-string) since V (σ, τ) is sub-network, which is perfectly consistent with (σ, τ)
being a point.

The Eq 10 has simply been copied from p.82 of Polchinski, [1], with two changes. First, we replace the
entire string worldsheet with a relevent sub-string. Secondly, we claim that the approximation holds only as an
equilibrium, in a limit of time ξ being in�nite, while in conventional string theory time ξ is absent altogether
and the above holds without the need of "equilibrium". Now, the di�usion process that would create the above
situation has to have the following components:

a) The parameter S has to di�use across the sub-string
b) The "sources" of S have to include L, R, and k
c) The "insulator" A ∩ B should have a "source" of ψ(B) but not of ψ(A). This can be accomplished by

placing the source in�nitesimally in the B-direction from the insulator; in other words, it is placed at (A∩B)+

rather than (A ∩B)−.
d) The strength of the "source" mentioned in part d has to be proportional to eiS+τψ−τ
The parts a-b are meant to produce Eq 10 while Eq c-d are meant to produce Eq 9. For simplicity, let us

rewrite Eq 10 as

lim
ξ→∞

S = lim
ξ→∞

∫
V

dσdτ L(σ, τ) (11)

where we use δ-functions in order to absorb curvature term into L:

L(σ, τ) =
1

2πα′
g1/2gαβ∂aX

µ∂bXµ +
1

4π
g1/2R+

1

2π

∫
∂V (σ,τ)

ds k(s) δ2
ε1(σ − σ(s)) (12)

where

δε(x) =
√

2πεe−
x2

2ε , δ2
ε (x, y) = δε(x)δε(y) (13)

Parts a-b can be enforced through di�usion process in "space" coordinates (σ, τ) that is taking place in "time"
ξ,

∂S

∂ξ
= eαβ∂α(f∂βS) , f = exp

(
−
∫
∂V (σ,τ)

ds k(s) δ2
ε2(σ − σ(s))

)
(14)

with the initial conditions

S(σ, τ ; ξ = ξ1) =

∫
∂V (σ,τ)

ds k(s) δ2
ε3(σ − σ(s)) (15)
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In the Eq 14 the function f corresponds to the variation of conductivity; the f → 0 limit corresponds to
insulator. Now, due to the δ-function in Eq 14 we see that material has constant conductivity away from the
boundary, yet it becomes insulator in the vicinity of the boundary. The fact that f → 0 at the boundary
happens at exponential rate implies that, provided that S is well behaved, all derivatives of f are zero at the
boundary; in other words,[

∀(i, j)∂iσ∂jτS
∣∣∣
∂V
6=∞

]
=⇒ ∂S

∂ξ

∣∣∣∣
∂V

= 0 (16)

This feauture leads to boundary conditions; namely, the behavior of S at the boundary at arbitrary ξ needs to
be the same as it used to be at ξ = ξ0. Another consequence of exponential behavior of f at the boundary is
that, by Gauss' theorem,

f∂βS
∣∣∣
∂V

= 0 =⇒
∫
eαβ∂α(f∂βS) = 0 =⇒ ∂

∂ξ

∫
S(σ, τ ; ξ)dσdτ = 0 (17)

In light of Eq 15 this becomes

∀ξ
(∫

S(σ, τ)dσdτ ≈
∫
∂V (σ,τ)

ds k(s)

)
(18)

Now, our physical knowledge of di�usion tells us that, at ξ → ∞, the value of S approaches constant. This
means that

lim
ξ→∞

S(σ, τ ; ξ) ≈ 1

V ol(V (σ, τ))

∫
∂V (σ,τ)

ds k(x) (19)

In particular, we can �nd ξV � ξ0 such that

S(σ, τ ; ξ2) ≈ 1

V ol(V (σ, τ))

∫
∂V (σ,τ)

ds k(x) (20)

where the value of ξV will di�er for each region V ; namely, if B has larger τ than A, then ξB > ξA; yet, the
values of ξ0 are the same for all regions.

The above results in parts a-b being true. Now let us produce parts c-d. In order to do that, we postulate
similar di�usion equation for ψ,

∂ψ

∂ξ
= eαβ∂α(f∂βψ) (21)

but this time we will impose initial condition at ξ = ξV as opposed to ξ = ξ0. Thus, we will be able to assume
that S is constant throughout the substring (see Eq 20) and focus entirely on behavior of ψ. Thus, we will set
our boundary conditions to be

ψ(σ, τ ; ξ = ξ2) =
∑

Wk∩V 6=∅;Wk≺V

∫
∂V ∩W

ds ψ−(s)eiS
+(s) δ2

ε3(σ − σ(s)) (22)

where A ≺ B means that one can draw a curve starting at an element of A and ending in the element of B, which
moves in the direction of increase of τ ; and we further assume that whenever A ≺ B holds, B ≺ A does not.
Furthermore, by ψ−(s) we mean the following: since Wk ∩ V is an insulator, the behavior of ψ is discontinuous
across that line. Now, the value of ψ−(s) is measured in�nitesimally towards the Wk side, while the value
of ψ+(s) is measured in�nitesimally to the V side; both statements are true regardless of which direction the
point s, itself, is shifted. In our case, s is shifted in�nitesimally to V side; thus ψ−(s) implies "in�nitesimal
nonlocality". Now, suppose the value of ξV is selected in such a way that, at the time ξ = ξV , the �eld ψ has
already reached its respective "constant" values at every single region Wk (thus, ξWk

< ξV ); we will denote the
latter "constant" by ψ(Wk). It is then easy to see that

lim
ξ→∞

ψ(V ; ξ) =
∑

Wk∩V 6=∅;Wk≺V

λ(Wk ∩ V )ψ(Wk, ξ2)eiS(V ) (23)
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where λ(Wk ∩ V ) denotes the length of Wk ∩ V . It is true that the limit on left hand side is achieved only for
ξ � ξV . At the same time, however, the right hand side has already achieved said limit at ξ = ξV . Thus, we
can replace ξ = ξV with ξ →∞ on the right hand side, to produce

lim
ξ→∞

ψ(V ; ξ) = lim
ξ→∞

( ∑
Wk∩V 6=∅;Wk≺V

λ(Wk ∩ V )ψ(Wk, ξ)e
iS(V )

)
(24)

If we now assume that there are constants λ and V such that

∀A ≺ B(λ(A ∩B) = λ , V (A) = V (B) = V ) (25)

Then Eq 20 together with Eq 24 would produce the desired evolution of ψ in τ : after all, V is displaced in
+τ direction from Wk. Yet, such result is only an emergent ξ → ∞ limit of Eq 14 and 21 under the initial
conditions 15 and . The "timelike" nature of τ is enforced by the fact that ξV � ξWk

for all k. This is seen
from the fact that we have assumed that ψ has already reached equilibrium throught Wk at the time ξ = ξ2(V ),
as evident from our use of notation ψ(Wk) in Eq 23. This, in combination with the fact that V is shifted in
+τ direction relative to Wk produces the correlation between τ and ξ in initial conditions which is what makes
τ appear "timelike" in the outcome. In addition, the "timelike" nature of τ is also enforced in the use of ψ−,
instead of ψ+, in Eq .

Conclusions

To sum it up, we have produced a coarse graining of quantum mechanical process on the string. Coarse graining
consists of a set of choices of sub-networks within an afore-existing "big" network and afore-existing criteria
that each sub-network can either be fully included or fully excluded. The union of sub-networks that are fully
included would represent "history". The fact that "big" network has been �xed is what allows us to avoid
"true" quantization in favor of "emergent" one; the latter can be assigned realist meaning while the former can
not. Furthermore we have re-interpretted the notion of spacetime. We view (σ, τ) coordinates as space-only.
The "timelike" nature of τ is due to a "pattern" displayed in otherwise "space-alone" plane. That pattern had
emerge over the evolution of such plane in ξ at a limit ξ →∞. The overall achievement of this work is that the
probability amplitudes on the trajectory space are being interpretted in terms of "heat" in the ordinary space
(namely, the surface of the �xed world-sheet).
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Introduction

Recent observation shows that the Universe is expanding with acceleration [1,2]. Though there exist a number
of models able to explain this late time acceleration, a number of authors introduced the spinor �eld into the
system in order to study this phenomenon [3�16]. It was found that the spinor �eld for a suitable choice of
nonlinearity can

(i) give rise to singularity free Universe;
(ii) accelerate the isotropization process;
(iii) generate accelerating mode of expansion of the Universe.
It was also found that the nonlinear spinor �eld can simulate di�erent kinds of matter �eld ranging from

ekpyrotic matter to phantom matter as well as Chaplygin gas [17�21].

Basic equations

The spinor �eld Lagrangian we take in the form [22]

Lsp =
ı

2

[
ψ̄γµ∇µψ −∇µψ̄γµψ

]
−mspψ̄ψ − F, (1)

where the nonlinear term F describes the self-interaction of a spinor �eld and can be presented as some
arbitrary functions of invariants generated from the real bilinear forms of a spinor �eld. In our case we consider
F = F (K), K = {I, J, I ± J} where I = S2 = (ψ̄ψ)2, J = P 2 = (ıψ̄γ5ψ)2. In (1) ∇µ is the covariant
derivative of spinor �eld:

∇µψ = ∂µψ − Γµψ, ∇µψ̄ = ∂µψ̄ + ψ̄Γµ, (2)

where Γµ is the spinor a�ne connection.
Variation with respect to ψ̄(ψ) gives spinor �eld equations:

ıγµ∇µψ −mspψ − 2FK(SKI + ıPKJγ
5)ψ = 0, (3a)

ı∇µψ̄γµ +mspψ̄ + 2FK ψ̄(SKI + ıPKJγ
5) = 0. (3b)
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where we denote FK = dF/dK, KI = dK/dI and KJ = dK/dJ.
It can be shown that on account of spinor �eld equations (3) the Lagrangian (1) takes the following form

Lsp =
ı

2

[
ψ̄γµ∇µψ −∇µψ̄γµψ

]
−mspψ̄ψ − F (K)

=
ı

2
ψ̄[γµ∇µψ −mspψ]− ı

2
[∇µψ̄γµ +mspψ̄]ψ − F (K),

= 2FK(IKI + JKJ)− F (K) = 2KFK − F (K). (4)

The energy-momentum tensor of the spinor �eld has the form

T ρµ =
ı

4
gρν
(
ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ

)
− δρµLsp (5)

which on account of (2) can be written as

T ρ
µ =

ı

4
gρν
(
ψ̄γµ∂νψ + ψ̄γν∂µψ − ∂µψ̄γνψ − ∂νψ̄γµψ

)
− ı

4
gρνψ̄

(
γµΓν + Γνγµ + γνΓµ + Γµγν

)
ψ (6)

− δρµ
(
2KFK − F (K)

)
.

From (6) it becomes clear that if the spin connections Γµ's for a given metric are di�erent, the spinor �eld in
that case possesses non-diagonal components of EMT.

The spinor a�ne connection matrices Γµ(x) are uniquely determined up to an additive multiple of the unit
matrix by the equation

∂γν
∂xµ

− Γρνµγρ − Γµγν + γνΓµ = 0, (7)

with the solution

Γµ =
1

4
γ̄aγ

ν∂µe
(a)
ν −

1

4
γργ

νΓρµν . (8)

For the Bianchi type -I cosmological model given by

ds2 = dt2 − a2
1 dx

2 − a2
2 dy

2 − a2
3 dz

2, (9)

with ai being the functions of time only, the Γµ(x) have the form

Γ0 = 0, Γ1 =
ȧ1

2
γ̄1γ̄0, Γ2 =

ȧ2

2
γ̄2γ̄0, Γ3 =

ȧ3

2
γ̄3γ̄0. (10)

Energy momentum tensor

The nonzero components of the energy momentum tensor in this case read

T 0
0 = mspS + F (K), (11a)

T 1
1 = T 2

2 = T 3
3 = F (K)− 2KFK , (11b)

T 1
2 =

ı

4

a2

a1

(
ȧ1

a1
− ȧ2

a2

)
ψ̄γ̄1γ̄2γ̄0ψ, (11c)

T 1
3 =

ı

4

a3

a1

(
ȧ3

a3
− ȧ1

a1

)
ψ̄γ̄3γ̄1γ̄0ψ, (11d)

T 2
3 =

ı

4

a3

a2

(
ȧ2

a2
− ȧ3

a3

)
ψ̄γ̄2γ̄3γ̄0ψ. (11e)
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As one sees, in case of a FRW cosmological model where a1 = a2 = a3 the non-diagonal components of the
energy momentum tensor vanish.

Einstein Equation

Taking into account that the metric (9) has only diagonal non-zero components of Einstein tensor, the corre-
sponding system of Einstein equations has the form

ä2

a2
+
ä3

a3
+
ȧ2

a2

ȧ3

a3
= κT 1

1 , (12a)

ä3

a3
+
ä1

a1
+
ȧ3

a3

ȧ1

a1
= κT 2

2 , (12b)

ä1

a1
+
ä2

a2
+
ȧ1

a1

ȧ2

a2
= κT 3

3 , (12c)

ȧ1

a1

ȧ2

a2
+
ȧ2

a2

ȧ3

a3
+
ȧ3

a3

ȧ1

a1
= κT 0

0 , (12d)

which should be supplemented by additional conditions

ı

4

a2

a1

(
ȧ1

a1
− ȧ2

a2

)
ψ̄γ̄1γ̄2γ̄0ψ = 0, (13a)

ı

4

a3

a1

(
ȧ3

a3
− ȧ1

a1

)
ψ̄γ̄3γ̄1γ̄0ψ = 0, (13b)

ı

4

a3

a2

(
ȧ2

a2
− ȧ3

a3

)
ψ̄γ̄2γ̄3γ̄0ψ = 0. (13c)

The conditions (13) open two possibilities:

ψ̄γ̄1γ̄2γ̄0ψ = ψ̄γ̄3γ̄1γ̄0ψ = ψ̄γ̄2γ̄3γ̄0ψ = 0, (14)

which imposes conditions of the components of the spinor �eld leaving the metric unchanged, or

(
ȧ1

a1
− ȧ2

a2

)
=

(
ȧ2

a2
− ȧ3

a3

)
=

(
ȧ3

a3
− ȧ1

a1

)
= 0, (15)

that makes the space-time isotropic from the very beginning.

Two possibilities

Let us consider the �rst case when spinor �eld obeys (8). On view of the fact that T 1
1 = T 2

2 = T 3
3 from (12) one

dully �nds

ai = DiV
1/3 exp

(
Xi

∫
dt

V

)
,

3∏
i=1

Di = 1,

3∑
i=1

Xi = 0, (16)

with Di and Xi being the integration constants. Thus we see that the metric functions can be expressed in
terms of V .

Summation of (12a), (12b), (12c) and 3 times (12d) leads to the equation for V

V̈ = 3κ(F (K)−KFK)V, (17)
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where for simplicity we set msp = 0. Let us note that, in the uni�ed nonlinear spinor theory of Heisenberg, the
massive term remains absent, and according to Heisenberg, the particle mass should be obtained as a result of
quantization of spinor prematter [23,24]. In the nonlinear generalization of classical �eld equations, the massive
term does not possess the signi�cance that it possesses in the linear one, as it by no means de�nes total energy
(or mass) of the nonlinear �eld system. Thus without losing the generality we can consider the massless spinor
�eld putting m = 0. From the spinor �eld equations it can be shown that K = K2

0/V
2, K0 = const.

The Eq. (17) can be solved in quadrature. Let us go back to the spinor �eld equations. For simplicity we
consider the case when K = I. In this case (3a) can be written as

φ̇1 + ıDφ1 = 0, (18a)

φ̇2 + ıDφ2 = 0, (18b)

φ̇3 − ıDφ3 = 0, (18c)

φ̇4 − ıDφ4 = 0, (18d)

where φi =
√
V ψi, ψ = col(ψ1, ψ2, ψ3, ψ4), D = 2SFK .

As one sees, the foregoing system of equations is easily solvable. In this case for the components of spinor
�eld we �nd

ψ1(t) = (C1/
√
V ) exp

(
−i
∫
Ddt

)
, (19a)

ψ2(t) = (C2/
√
V ) exp

(
−i
∫
Ddt

)
, (19b)

ψ3(t) = (C3/
√
V ) exp

(
i

∫
Ddt

)
, (19c)

ψ4(t) = (C4/
√
V ) exp

(
i

∫
Ddt

)
, (19d)

with C1, C2, C3, C4 being the integration constants and related to K0 as C
∗
1C1 +C∗2C2 −C∗3C3 −C∗4C4 = K0.

Recalling that the spinor �eld should satisfy the equality (8), after some manipulations we get

C∗1C2 + C∗3C4 = C∗2C1 + C∗4C3 = 0, (20a)

C∗1C1 − C∗3C3 = C∗2C2 − C∗4C4 =
K0

2
. (20b)

For the nonlinear term

F (K) = λK(1+W )/2, λ = const. (21)

which describes a perfect �uid from ekpyrotic matter to phantom we get

∫
dV√

3κλV 1+W
0 V 1−W + C1

= t+ t0, (22)

whereas, for the nonlinear term

F =
(
A+ λK(1+γ)/2

)1/(1+γ)
. (23)

which describes a generalized Chaplygin gas we get

∫
dV√

C1 + 3κV
(
AV 1+γ + λV 1+γ

0

)1/(1+γ)
= t+ t0. (24)
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Figure 1: Evolution of the Universe �lled with quintessence. The solid (red) line stands for volume scale V ,
while the dash-dot (blue) line stands for a3.

.

Figure 2: Evolution of the Universe �lled with Chaplygin gas. The solid (red) line stands for volume scale V ,
while the dash-dot (blue) line stands for a3.

.

If we explore the second possibility, the non-diagonal components of the EMT imposes restriction on the metric
functions give by (15). In that case we have

ȧ1

a1
=
ȧ2

a2
=
ȧ3

a3
≡ ȧ

a
. (25)

The Einstein system in this case takes the form

2
ä

a
+
ȧ2

a2
= κT 1

1 , (26a)

3
ȧ2

a2
= κT 0

0 , (26b)

which describes a FRW model.
In order to �nd the solution that satis�es both (26a) and (26b) we rewrite (26a) in view of (26b) in the

following form:
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ä =
κ

6

(
3T 1

1 − T 0
0

)
a. (27)

As in previous case, for the given nonlinearity the solution to (27) can be found in quadrature. The components
of metric functions in this case read

ai = DiV
1/3 = Dia,

3∏
i=1

Di = 1, (28)

which means it represents a tiny sector of the general solutions (16) which one obtains for the BI model in case
of isotropic distribution of matter with trivial non-diagonal components of energy-momentum tensor, e.g., when
the Universe is �lled with perfect �uid, dark energy etc.

Conclusions

1. Within the scope of Bianchi type-I space time we study the role of spinor �eld on the evolution of the
Universe.

2. It is shown that the spinor �eld possesses non-zero non-diagonal components of energy-momentum tensor
thanks to its speci�c relation with gravitational �eld. This fact plays vital role on the evolution of the
Universe.

3. There might be two di�erent scenarios: (i) the components of the spinor �eld are a�ected leaving the space-
time initially anisotropic that evolves into an isotropic one asymptotically; (ii) the space-time becomes
isotropic right from the beginning and can be completely described by the Einstein �eld equations for
FRW metric.

4. As numerical analysis shows, in case of early isotropization the Universe expands rather rapidly.

5. There might be another possibility when the non-diagonal components of energy-momentum tensor in�u-
ence both the spinor �eld and metric functions simultaneously.
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Introduction

Theories with nonminimal kinetic coupling of a scalar �eld and gravity belong to a class of the most general
scalar-tensor theories. In the context of in�ationary cosmology these models were proposed by Amendola in
1993 [1].

In the theories of this type the cosmological action contains combinations of the components of the curvature
tensor and derivatives of a scalar �eld: κ1Rφ,µφ

,µ, κ2Rµνφ,µφ
,ν , κ3Rφ2φ and others, where κi are the nonmin-

imal kinetic coupling constants. The Lagrangian giving the second-order equations of motion was derived by
Horndeski in 1974 [2].

One of the most of intriguing feature of the models with the kinetic coupling κGµνφ
,µφ,ν (Gµν is the Einstein

tensor) found in [3]-[5] is the existence of in�ationary behaviour at the early time in the case of zero or constant
potential of the scalar �eld, i. e. solely due to the coupling. This regime exists only for a positive coupling
constant κ.

In this paper the model of the Universe with the nonminimal kinetic coupling of the scalar �eld φ with gravity
of the form κGµνφ

,µφ,ν and the power-low potential V (φ) = V0φ
N is considered. An in�uence of nonzero scalar

�eld potential on the cosmological dynamics of the model is studied. The methods of the theory of dynamical
systems is used in order to analyze all possible asymptotic regimes.

Main equations

Let us consider the theory of gravity with the action

S =

∫
d4x
√
−g
{
R

8π
−
[
gµν + κGµν

]
φ,µφ,ν − 2V (φ)

}
, (1)

where V (φ) is the scalar �eld potential, gµν is the metric tensor, R is the scalar curvature, Gµν is the Einstein
tensor, and κ is the coupling parameter with the dimension of length2.

In the spatially-�at Friedmann-Robertson-Walker cosmological model with the metric signature (− + ++)
the action (1) yields the following �eld equations

3H2 = 4πφ̇2
(
1− 9κH2

)
+ 8πV (φ), (2)

2Ḣ + 3H2 = −4πφ̇2
[
1 + κ

(
2Ḣ + 3H2 + 4Hφ̈φ̇−1

)]
+ 8πV (φ), (3)
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(φ̈+ 3Hφ̇)− 3κ(H2φ̈+ 2HḢφ̇+ 3H3φ̇) = −Vφ, (4)

where a dot denotes the derivative with respect to time, H(t) = ȧ(t)/a(t) is the Hubble parameter, a(t) is the
scale factor, φ(t) is a homogenous scalar �eld, and Vφ = dV/dφ.

We introduce the following set of dimensionless variables

x = 8πφ̇2

6H2(1+8πκφ̇2)
, y = − 8πκφ̇2

2(1+8πκφ̇2)
, z = 8πV

3H2(1+8πκφ̇2)
, v = φ̇

φH (5)

and also the dimensionless parameter depending on the speci�c form of function V (φ):

β =
φVφ
V

(6)

In this work we chose the power-low potential V (φ) = V0φ
N so that β = NV0φ

N

V0φN
= N = const.

Generally, x characterizes the kinetic energy, and z characterizes the potential energy of the scalar �eld,
while y is connected with the non-minimal kinetic coupling. Correspondingly, z = 0 if V = 0, and y = 0 if
κ = 0.

Taking derivative of variables x, z, v (y is excluded by x + y + z = 1 which follows from (2)) with respect
to ln a (′ := d

d ln a ), we obtain:

x′ = x
5z2+4x2−9x(1−z)−11z+6

((Nvz(x+ z − 2)− 6(1− z)(x+ z))(3− 2x− 2z)−
−2Nvz(x+ z − 1)− 6(1− z)(2x+ 3z − 3))),

z′ = z
5z2+4x2−9x(1−z)−11z+6

(−2Nvz(x+ z − 1)− 6(1− z)(2x+ 3z − 3)+
+2(Nvz(x+ z − 2)− 6(1− z)(x+ z))(1− x− z)) +Nvz,

v′ = v
5z2+4x2−9x(1−z)−11z+6

( 1
2Nvz(x+ z − 2)− 3(1− z)(x+ z)−
−Nvz(x+ z − 1)− 3(1− z)(2x+ 3z − 3))− v.

(7)

Stationary points, their stability and the corresponding solutions

In this section we study the stationary points of the dynamical system (7) and perform the stability and
asymptotic analysis of these points. To �nd a stationary point (x0, z0, v0), we set x′0 = z′0 = v′0 = 0 in (7) and
solve the resulting algebraic equations. Then, we investigate its stability with respect to small perturbations
δx, δz, and δv around (x0, z0, v0). Speci�cally, we substitute

x = x0 + δx, z = z0 + δz, v = v0 + δv (8)

into (7) and keep the terms up to the �rst order in δx, δz, δv. This leads to the system of �rst-order ordinary
di�erential equations

d

d(ln a)

 δx
δz
δv

 =M

 δx
δz
δv

 , (9)

where M is a 3 × 3 matrix which depends on (x0, z0, v0). The stability of the stationary point (x0, z0, v0) is
determined by the corresponding eigenvalues (λ1, λ2, λ3) ofM. In particular, if the real parts of all eigenvalues
are negative, the point is stable (the local sink); if all real parts are positive, the point is unstable being stable
while integrating in the opposite time direction (the local source); if there are eigenvalues with di�erent signs
of their real parts, the point is the saddle point.
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The results of this investigation are presented in the Table 1 for the case of N 6= 2. At N = 2 the eigenvalues
of some points are equal to zero so that this case must be studied separately. It is necessary to stress that all
the solutions found here were checked by the substitution of those in the initial system of equations (2)-(4).

� Coordinates
of

stationary
points

Corresponding solution Character of
stability

1 x = 0, y = 1,
z = 0, v = 0

a(t) = a0|t− t0|
2
3 ,

φ(t) = φ0 ±
√
− 1

12πκ
(t− t0),

Exists for ∀N,κ < 0,
t→ t0

Unstable node

2 x = 1
2
,

y = − 1
2
,

z = 1, v = 0

a(t) = a0e
±
√

1
3κ

(t−t0),

|φ(t)|
2

2−N =

√
|V0|(2−N)

2
(t− t0),

Exists for 0 < N < 2, κ > 0
t→∞

Complex type,
stability depends on

the initial data

3 x = 1, y = 0,
z = 0, v = 0

a(t) = a0|t− t0|
1
3 ,

φ(t) = ±
√

1
12π

ln | t−t0
t′−t′0

|,

Exists for V (φ) ≡ 0, ∀κ,
t→∞

Saddle

4 x = 3
2
,

y = − 1
2
,

z = 0, v = −3

a(t) = a0e
± 1

3
√
κ
(t−t0),

φ(t) = φ0e
− 1√

κ
(t−t0),

Exists for 0 < N < 2, κ > 0,
φ→∞, t→ −∞

Unstable node

5 x = 0,
y = − 1

2
,

z = 3
2
,

v = 12N
3N+2

a(t) = a0|t− t0|
3N+2

3(2−N) ,

φ(t) = φ0|t− t0|
4

2−N ,

Exists for N > 2, ∀κ,
t→ t0

Stable node

Table 1. Stationary point, the corresponding solutions, and their character of stability for the case of

N 6= 2 .

The numerical study of the initial system (2)-(4) for 0 < N < 2 shows that the trajectories asymptotically
go to either the solution 2 from the Table 1 or to the oscillations depending on the initial data (see Fig. 1.)
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Figure 1: Fig. 1. The evolution of the Hubble parameter for the potential V (φ) = 0.1|φ|
3
2 , the coupling

constant κ = 0.1 and the following initial data: 1). φ(0) = 32, φ̇(0) = −100, 2). φ(0) = 320, φ̇(0) = −1000,
3).φ(0) = 3200, φ̇(0) = −10000,4).φ(0) = 32000, φ̇(0) = −100000,5).φ(0) = 3200000, φ̇(0) = −11000000. The
lower and upper dotted line show the asymptotics: 1/(3

√
κ) ≈ 1.0541 and 1/

√
3κ ≈ 1.8257.

Conclusions

In this work the in�uence of the power-low potential V (φ) = V0φ
N (N 6= 2) on the model of cosmological

dynamics with the nonminimal kinetic coupling κGµνφ
,µφ,ν is studied. Using the methods of the theory of

dynamical systems two di�erent stable asymptotic regimes are found:
(i) the power-low solution existing for N > 2, t→ t0, and leading to the "Big Rip" singularity, and

(ii) the solution with the constant Hubble parameter H = ±
√

1
3κ and the power-low increase of the scalar �eld,

which exists for 0 < N < 2.

For the sloping potentials with 0 < N < 2 the unstable exponential solution H = ±
√

1
9κ exists which earlier

was found by Sushkov for the potential V (φ) = const. Therefore for N > 2 this in�ationary regime is destroyed.
Starting from one unstable exponential regime with H = ±

√
1/9κ the trajectories may go to another stable

in�ationary stage with H = ±
√

1/3κ. It is an eternal in�ation. However, our numerical integration of the
initial system of equations (2)-(4) shows (see Fig. 1) that for a wide range of parameters κ and V0 we have the
possibility of a transition from the �rst in�ation to oscillations. The range of the parameters for such scenario
needs to be further investigated in more details. It is also necessary to study the case of N = 2 for which the
eigenvalues of some stationary points are equal to zero.
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Dirac equation for an electron. Let R1,3 be the Minkowski space with Cartesian coordinates xµ, µ =
0, 1, 2, 3, with partial derivatives ∂µ = ∂/∂xµ, and with a metric tensor given by the diagonal matrix η =
diag(1,−1,−1,−1). Consider the Dirac equation for an electron

iγµ(∂µψ − iaµψ)−mψ = 0, (1)

where ψ = ψ(x) is a Dirac spinor, aµ are components of a covector potential of electromagnetic �eld, and γµ

are are γ-matrices in the Dirac representation. We have

γµγν = −γνγµ, µ 6= ν, (γ0)2 = 1, (γ1)2 = (γ2)2 = (γ3)2 = −1,

where 1 is the four dimensional identity matrix.
Let us recall basic properties of the Dirac equation.

1. The electric charge conservation law follows from the Dirac equation

∂µj
µ = 0, where jµ = ψ̄γµψ = ψ†γ0γµψ,

where † is the operation of Hermitian conjugation.

2. The Dirac equation is covariant under Lorentz transformations of coordinates

xµ → x́µ = pµνx
ν , ψ → ψ́ = Sψ,

where P = ‖pµν‖ ∈ O(1, 3), S ∈ Pin(1, 3) and S−1γµS = pµνγ
ν (de�nition of the Lie group Pin(1, 3) see

in [2]).

3. The Dirac equation is covariant under gauge transformations w.r.t. the U(1) gauge Lie group

ψ → ψ̂ = eiλψ, aµ → âµ = aµ + ∂µλ, λ : R1,3 → R.

4. The Dirac equation is related to the decomposition of the Klein-Gordon-Fock operator

(iγµ∂µ −m)(iγν∂ν +m) = −(∂µ∂
µ +m2). (2)

Generalized Dirac equation with nonlinearity. Let us take I = γ0γ1γ2γ3. We see that I2 = −1, I† = −I.
Denote a subalgebra of matrix algebra

N = {α1 + βI ∈ Mat(4,C) : α, β ∈ R} ' C.

Z = α1 + βI↔ z = α+ iβ ∈ C.
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Let f = f(z) be a continuous function f : C → C and let F = F (Z) be the corresponding function
F : N → N such that F (Z)|1→1,I→i = f(z).

Let us postulate the following equation, which depend on the function F : N → N :

iγµ(∂µψ − iaµψ)− F (Z)ψ = 0, (3)

where

Z = (ψ̄ψ)1− (ψ̄Iψ)I

The �rst term in the equation (3) is equal to the �rst term in the Dirac equation for an electron (1). So, we say
that the equation (3) is a generalized Dirac equation (with a nonlinearity).

Consider basic properties of the generalized Dirac equation (3).

1. The electric charge conservation law:

∂µj
µ = 0, where jµ = ψ̄γµψ = ψ†γ0γµψ.

2. Lorentz invariance of the Dirac equation:

xµ → x́µ = pµνx
ν , ψ → ψ́ = Sψ,

where P = ‖pµν‖ ∈ SO+(1, 3), S ∈ Spin+(1, 3) and S−1γµS = pµνγ
ν .

3. Gauge invariance w.r.t. U(1) gauge Lie group:

ψ → ψ̂ = eiλψ, aµ → âµ = aµ + ∂µλ, λ : R1,3 → R.

4. Decomposition of the second order operator:

(iγµξµ − F (Z))(iγνξν + F (Z)) = −(ξµξ
µ + |F (Z)|2). (4)

If F (Z) = σ1 + ρI, where σ, ρ is functions R1,3 → R, then F (Z) = σ1− ρI, |F (Z)|2 = σ2 + ρ2, and ξµ are
commutative symbols.

We see two di�erences in the basic properties of equations (3) and (1).

� The equation (1) is invariant under Lorentz transformations of coordinates from the Lie group O(1, 3), but
the equation (3) is invariant under Lorentz transformations of coordinates from the proper orthochronous
Lorentz group SO+(1, 3).

� The decomposition (2) is, generally speaking, di�erent to the decomposition (4).

Consider special cases of the generalized Dirac equation.
If we take F (Z) ≡ m1 in (3), then we get the Dirac equation (1). That means the equation (3) is, in fact, a

generalization of the equation (1).
Let us remind that the Dirac equation (1) can be derived from the Lagrangian

L = ψ̄iγµ(∂µψ − iaµψ)−m(ψ̄ψ).

If we take F (Z) ≡ Z = (ψ̄ψ)1− (ψ̄Iψ)I, then we get the equation

iγµ(∂µψ − iaµψ)− ((ψ̄ψ)1− (ψ̄Iψ)I)ψ = 0,

which can be derived from the Lagrangian

L = ψ̄iγµ(∂µψ − iaµψ)− 1

2
(ψ̄ψ)2 +

1

2
(ψ̄Iψ)2.
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Heisenberg's nonlinear �eld equation. One can see similarity between the generalized Dirac equation and
the Heisenberg nonlinear �eld equation [1]

iγµ(∂µψ − iaµψ)− (ψ̄γµψ)γµψ − (ψ̄γµIψ)γµIψ = 0. (5)

Heisenberg in [1] had made an attempt to create a uni�ed �eld theory on the basis of his equation (5). So,
it will be interesting to develop such a theory on the basis of new generalized Dirac equation (3).
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Introduction

I would like to give you a brief non-technical introduction to Monocosm formalism, a generalization of Quantum
Mechanics, based on several relatively new results in mathematical physics. This generalization can be of
interest, because it mimics the kinematic structure of General Relativity, and is capable of accounting for three
basic,�non-quantum� features of the observable world: the observable dimensionality of spacetime, the existence
of a metric on it, and the signature of this metric. Let us recall a few simple technical constructs from the
foundations of Hilbert space formulation of Quantum Mechanics.

M-Bundle

Recall that any Hilbert space contains a natural principal bundle, with a complex or quaternionic ray as both the
standard �ber, and the structure group of this bundle. The total space of this bundle is the punctured Hilbert
manifold, the set of all nonzero vectors of the Hilbert space, with the natural manifold structure. The base
space of the bundle is the projective Hilbert space. For a complex Hilbert space, this principal bundle looks like
stacks of paper cups, because the standard �ber, the Lie group of nonzero complex numbers is two dimensional
topological cylinder. For a quaternionic Hilbert space the �ber is the Lie group of nonzero quaternions, which
is a four dimensional manifold, a topological product of a three-sphere and a real line. In both bundles the
structure groups act on each �ber, producing a realization of the group in the set of states. They are both
single component Lie groups, easy to work with, parallelizable and require a single coordinate patch. Thus, any
quantum system is represented by a set of its states with an action of a very special group. We call this bundle
the monocosm of the system, or just the M-bundle.

FLRW Metrics on Quaternions

The monocosm formalism is based in part on a recent discovery of a natural relativistic structure on the the
standard �ber of the M-bundle. Indeed, the Lie group of nonzero quaternions carries a set of built-in, closed
Friedman-Lemaitre-Robertson-Walker metrics, each generated by a foliation of hyper-surfaces, induced by the
gradient of some real-valued function. Each foliation determines the scale factor of the metric it generates.
Thus we have the following situation: a quantum system is represented by something that looks like a copy of
spacetime, with something that looks like a preferred time. For reasons that will be given in the semantics of
the theory, we call this preferred time the perceptible time of the observer. To get an idea of how this important
solution of Einstein equations pops up in quaternions, we recall that quaternions constitute a unital algebra,
in terminology of Mike Postnikov. Unital algebras are real �nite dimensional associative linear algebras with
identity. Such algebras have a rich structure. In particular, the set of its invertible elements constitute a Lie
group. In case of quaternion algebra, it is the set of nonzero quaternions. Any real linear algebra is a real vector
space equipped with a rank three tensor (structure tensor).
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This tensor is once contravariant and twice covariant, that is, it accepts a single one-form argument and
two vector argumets, outputting a real number. If you freeze the one-form argument, that is, keep it constant,
but vary the vector arguments, the rank of the tensor is reduced, you have just twice covariant tensor. If
it is symmetric, it is an inner product on the vector space of the algebra. This is called a principal inner
product of the algebra, and the one-form that generates it is called the ether form. These two objects are
intended to capture the notion of natural geometry encoded in algebraic structure. Of course, if there are too
many principal inner products of all signatures, or none at all, the algebra does not really have the intrinsic
geometry. Quaternions, however, have a distinct intrinsic geometry, because the only principal inner product is
Minkowski inner product. Curiously enough, Euclidean inner product cannot be obtained this way, so in this
sense, Euclidean geometry is not an intrinsic geometry of quaternions. Now, recall that the vector space of the
algebra is the tangent space, at the identity, to the Lie group of its invertible elements. Every principal inner
product is automatically extended along the left-invariant vector �elds to cover the whole group, producing
what we call the principal metric on the Lie group. For quaternions this metric is closed FLRW.

K�ahler Structure

The Hermitian inner product on a Hilbert space is a complex or quaternion-valued function. Given a canonical
basis of unit complex numbers and quaternions, it can be decomposed into real and imaginary parts. It is
well known that such a decomposition results in a K�ahler, or hyper-K�ahler structure on the Hilbert manifold.
The real part gives the Riemannian metric, and the imaginary part gives one or three symplectic forms, for
the complex and quaternionic case, respectively. By the way, there is a common misconception regarding
the notion of a canonical basis of unit quaternions, 1, i, j, k. The thing is, that in contrast with uniqueness
of the complex canonical basis, 1, i, there are many such bases in the quaternionic case, so the canonical
decomposition of a quaternion would be di�erent for di�erent bases. We should always keep this in mind, when
working simultaneously with several distinct objects based on quaternions.

Geometric Quantum Mechanics

This natural K�ahler structure is used in Geometric Quantum Mechanics, a beautiful endeavor seeking to describe
Quantum Mechanics in terms classical Hamiltonian formalism, in the manner similar to Classical Mechanics.
The metric part of the K�ahler structure describes some probabilistic features of quantum systems, and the sym-
plectic form governs the dynamics. Observables are real-valued functions on the Hilbert manifold, constructed
out of expectation values of the corresponding Hermitian operators. Just like in Classical Mechanics, to each
observable we associate, via the symplectic correspondence, its Hamiltonian vector �eld. Eigenstates are points
in the Hilbert manifold, at which the Hamiltonian vector �eld becomes vertical with respect to the natural
connection generated by the metric part of the K�ahler structure. Eigenvalues are the corresponding values of
the observable. Temporal evolution of a system is described by the Hamiltonian vector �eld of a preferred
observable, the Hamiltonian. This procedure is called the �rst stage of geometrization of Quantum Mechanics.
Since all the vectors in a ray represent the same state of a quantum system, there are many integral curves,
corresponding to the same evolution of the system. To eliminate this redundancy, the Hamiltonian formalism in
Geometric Quantum Mechanics is projected down to the base space of the complex M-bundle. The base space,
the complex projective Hilbert space has a natural K�ahler structure induced by the ambient K�ahler structure
of the Hilbert space. The Hilbert space becomes extraneous and usually not mentioned. This is the second
stage of geometrization. We should point out that this procedure fails in quaternionic case since quaternionic
projective Hilbert space does not admit a hyper-K�ahler structure. But in the complex case it works beautifully,
and, as well known, the dynamics of the complex Geometric Quantum Mechanics is essentially equivalent to
the canonical Schroedinger evolution.

Hyper-Hamiltonian Dynamics

Hyper-Hamiltonian dynamics [SLIDE] extends the Canonical Hamiltonian Formalism of Classical Mechanics
from symplectic domain into the domain of hyper-K�ahler manifolds. Observables are quaternion regular func-
tions, a generalization of the notion of a holomorphic function of complex analysis. To each observable we
associate a vector �eld, called its hyper-�eld, which is now a superposition of three Hamiltonian vector �elds
corresponding to the three symplectic forms of the K�ahler structure. Non-uniqueness of a canonical basis of unit
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quaternions plays very important part here, since the three Hamiltonian vector �elds change with a change of
canonical basis, but their superposition remains constant. Temporal evolution of the system is just the evolution
along the �ow, generated by the hyper-�eld of a preferred observable, the Hamiltonian of the system.

Monocosm Formalism

Monocosm formalism deploys the �rst stage of geometrization of Quantum Mechanics. It utilizes the natural
Hyper-K�ahler structure of the Quaternionic Hilbert Space and Hyper-Hamiltonian dynamics. States are in
one-to-one correspondence with points of the total space of the M-bundle, the punctured Hilbert manifold. In
particular, di�erent points in a quaternionic ray are considered representing di�erent states of a quantum system.
The rays themselves are referred to as Possible Worlds of the system. Each possible world is endowed with a
FLRW metric, and also with a preferred foliation of three-surfaces, which is interpreted as perceptible time of
the observer. Observables in Monocosm are quaternion regular functions. They are quaternion-valued functions
constructed out of expectation values of anti-Hermitian operators, which allows us to take advantage of the full
power of Hyper-Hamiltonian Dynamics. To each observable we associate its hyper-�eld, a superposition of three
Hamiltonian vector �elds. Just like in the geometric formulation of complex quantum mechanics, eigenstates
of an observable are points at which its hyper-�eld becomes vertical with respect to the natural connection
generated by the metric part of the hyper-K�ahler structure. Again, eigenvalues are the corresponding values
of the observable. The possible world that contains an eigenstate of a system is called an accessible world or
eigenworld of the system. Time in quantum mechanics is just a parameter of the �ow, generated by vector
�eld of the Hamiltonian of the system. In monocosm, however, we have the perceptible time. Any state of the
system singles out a three-dimensional hyper-surface in the possible world it belongs to. Just like in standard
Quantum Mechanics, in monocosm formalism an ideal measurement is an ordered pair of states, the initial, and
the �nal states of the measurement, the former being the state of the system at the time of the measurement,
and the latter being an eigenstate of the system. The corresponding possible worlds are called the source and
target world of the measurement, respectively. The target world is also referred to as the actual world of the
measurement. The eigenstate also singles out one of the hyper-surfaces of perceptible time. We call this hyper-
surface the hyper-surface of the present. So, due to richness of the internal structure of possible worlds, we
have more data pertaining to the measurement. These data consist of three parts. In the �rst part we have the
distance between the initial and �nal states, with respect to the Riemannian metric which is called the propensity
metric in monocosm. The inverse of this distance is called the propensity of the measurement. It is related to
the notion of probability: the larger the propensity, the more likely the measurement will result in a particular
�nal state. The second part of the data is the eigenvalue of the �nal state, which is a quaternion. Given a
basis on the quaternion algebra, the eigenvalue can be decomposed into a quadruple of real numbers. The third
part of the data is the hyper-surface of the present. It is intended to carry the instantaneous gravitational
information of the system. This is the basic technical setup of monocosm formalism.

Semantics

In most theoretical constructs that use the notion of an observer, for example in physics, observers are considered
occupants of the universe, that is, they are objects existing, in some sense, among other objects of the universe.
In monocosm, however, an observer is not an occupant, but an experient of the universe. Of course it does
not mean that we deny the existence of the universe and all that stu�. We simply take the minimalistic
approach to philosophy, and assume that our experiences de�nitely exist. We also realize that no matter what
we perceive or conceive, the percepts and concepts are also our experiences. We conjecture that complex
experiences are somehow composed out of simple ones, and that there are the simplest experiences, called
elementary experiences. So, what we are trying to do in monocosm, is to describe some constructs of physics,
like quantum systems, completely in terms of elementary experiences of an observer, considered as primitive,
unde�ned entities. For each observer, there are some special subsets of elementary experiences called paradigms,
which can be pictured as various alphabets of some language of thought of the observer. Intuitively, each letter
of any of the alphabets is an elementary observation and also an elementary action of the observer. It turns out
that paradigms are su�ciently structured objects. For example, superposition and composition of elementary
experiences can be de�ned in every paradigm, and many of them can be approximated by real associative algebras
with identity. The vector space of this algebra is intended to capture the notion of elementary observations,
called re�exors, and the multiplicative monoid â�� the notion of elementary actions, called e�ectors. We call
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the vector space and the monoid, the sensory domain and the motor domain of the observer, respectively. To our
observer-experient, the universe is just the totality of his experiences, more or less divided into subsets, subject
to some rules of behavior. This is nicely modeled by the category of sets, the universe of classical mathematics,
which is a topos, is special kind of a category, with the behavior of its objects and arrows governed by a well-
de�ned logic. For the category of sets, the logic is two-valued Boolean, for other toposes it does not have to
be. We assume that the observerâ��s contribution to the evolution of the universe is done through his motor
domain which somehow acts on each system. Recall that a quantum system is a set with the left action of the
group of nonzero quaternions. This is captured by the notion of an M-set, a set with left action of a monoid,
and the universe is modeled by the category of M-sets which turns out to be a topos. The logic of this topos is
called the operational logic of the observer. The main result of the observer theory is this: Given a universe of
M-sets, where M is the motor domain of a paradigm, and assuming that the operational logic of the observer is
two-valued Boolean, then the paradigm is isomorphic to the quaternion algebra.

Example: The Old World

Consider an example of a quantum system described in monocosm terminology. We call this system the Old
World. The M-bundle of the Old World contains a single possible world, hence the source, target and actual
worlds coincide for each measurement. The ambient time and the perceptible time also coincide. A temporal
evolution of the system is orthogonal to the level sets of the perceptible time with respect to the propensity
metric. Since the evolution vector �eld is vertical everywhere, every state of the system is an eigenstate. For each
measurement the hyper-surface of the present is a three-sphere. In conventional terms this seems to correspond
to the classical coarse-grained view of the universe - an observer at rest relative to CMB in the spacetime of a
spatially closed FLRW cosmology.

Summary

Monocosm is a proper generalization of the canonical Quantum Mechanics with observable as anti-Hermitian,
instead of Hermitian operators. Of course, in the complex case, either representation is completely valid, due
to simple relationship between eigenvalues of Hermitian and anti-Hermitian operators. The only e�ect of using
anti-Hermitian operators is that the imaginary unit migrates from the Schroedinger equation to eigenvalues. If
we take this generalization seriously, it seems to tell us that Standard Quantum Mechanics is best suited for
description of the Universe with two-dimensional spacetime, because two out of four dimensions are collapsed
in each possible world. Monocosm also seems to tell us that our spacetime is a spatially closed FLRW universe.
The currently accepted observation data suggest that if spatial curvature exists, it is quite small, and favor a
�at FLRW universe, although the observations are indirect and based in part on Standard Quantum Mechanics,
which we are trying to modify here. Still, in monocosm this geometry is an intricate part of the very foundations
of the theory, and obtained with no reference to General Relativity or any other theories of gravity, which is,
at the very least, interesting. Monocosm predicts some curious technical e�ects, a family of non-geodesic �ows
along left-invariant vector �elds on spacetime. The most ambitious results of the formalism asserts that we
could be using an incorrect mathematics in our attempts to study the universe, and o�ers us the mathematics
of the topos of M-sets as the correct one, in its opinion, so to speak. One of the consequences is that using
Lebesgue measure in computations over large distances, at the scale of galaxies, clusters and larger, may result
in a systematic accumulating error. Perhaps this could have some applications to the problem of dark matter,
although, again this is pure speculation. To summarize, monocosm formalism is a new, non-trivial generalization
of quantum mechanics that incorporates some kinematic features of General Relativity.
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Introduction

One of the approaches to quantum gravity is a causal set hypothesis. Consider two-dimensional Minkowski
space (Fig. 1).

Figure 1: An Alexandov set in two-dimensional Minkowski space.

This is a partially ordered set of events. If two events a and b are causally connected, and a precedes b, we
can consider an intersection of the future light cone of a and past light cone of b. This set is called an Alexandov
set of a pair a and b. In Minkowski space, an Alexandov set of pairs of events is in�nite or empty. According
a causal set hypothesis we assume that an Alexandov set of pairs of events is �nite or empty. Then the set of
events in the universe is a partially ordered locally �nite set (a causal set). A causal set approach to quantum
gravity was introduced by G. 't Hooft [1] and J. Myrheim [2] in 1978 (see the review [3]).

A causal set can be represented as a directed acyclic graph. Vertices are images of elements of causal set,
and directed paths are images of order relations. I investigate a simple particular case. This is an x-graph. An
x-graph is a directed acyclic graph with the degree of any vertex no more than (2, 2). This model was introduced
by D. Finkelstein [4] in 1988.
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In the causal set approach, there is only a causal set. All things in the universe are features of a causal
set. There are two main problems. We must deduce spacetime as some continuous limit, and we must deduce
matter. My talk covers the second problem. I suppose that the particles are some quasi-repetitive structures
of a causal set. We can make such structures by hand. But quasi-repetitive structures must be self-organized
structures as a consequence of dynamics. Let consider dynamics.

Any observer can only actually know a �nite part of any process. Then we consider only �nite x-graphs
(Fig. 2). In a graph theory, by de�nition, an edge is a relation of two vertexes. Consequently some vertexes of
�nite x-graph have less than four incident edges. These vertexes have free valences instead the absent edges.
These free valences are �gured by external edges as external lines in Feynman diagrams. There are incoming
and outgoing external edges. We can prove that the number of incoming external edges is equal to the number
of outgoing external edges for any x-graph.

Figure 2: An example of x-graph.

A sequential growth dynamics

The task of any dynamics is to reconstruct the future or the past stages of processes. We can reconstruct an
x-graph step by step. A minimal part is a vertex. We start from some given x-graph and add new vertexes
one by one. This procedure is proposed in my papers [5,6] in 1998. Similar procedure and the term �a classical
sequential growth dynamics� are proposed by D. P. Rideout and R. D. Sorkin [7] for other model of a causal
set in 1999.

We can add a new vertex to external edges. This procedure is called an elementary extension. There are four
types of elementary extensions (Fig. 3) [8]. In the �gure the x-graph G is represented by a rectangle because it
can have an arbitrary structure. There are two types of elementary extensions to outgoing external edges. This
is a prediction of the future evolution of the process. First type is an addition of a new vertex to two outgoing
external edges (Fig. 3a). Second type is an addition of a new vertex to one outgoing external edge (Fig. 3b).
Similarly, there are two types of elementary extensions to incoming external edges. This is a reconstruction of
the past evolution of the process. Third type is an addition of a new vertex to two incoming external edges
(Fig. 3c). Fourth type is an addition of a new vertex to one incoming external edge (Fig. 3d). We can prove
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that we can get every �nite connected x- graph from a single vertex by a sequence of elementary extensions of
these four types.

Figure 3: Four types of elementary extensions.

By assumption, the dynamics of this model is a non-deterministic dynamics. The algorithm to calculate
probabilities of di�erent variants of elementary extensions (or to choose the elementary extension) is a fun-
damental equation of motion for a causal set. I suppose that this algorithm is a very simple. I discovered
one simple algorithm such that a sequential growth by this algorithm generates a simple quasi-regular in�nite
structure with nonzero probability. Let consider this algorithm.

An algorithm of growth

The algorithm to choose the elementary extension without the calculation of probabilities includes 3 steps. The
�rst step is the choice of the elementary extension to the future or to the past. We assume the probability of
this choice is 1/2. The second step is the choice of one external edge that takes part in the elementary extension.
We assume the equiprobable choice. The probability of this choice is 1/n, where n is the number of incoming
or outgoing external edges in the x-graph. The third step is the �nal choice of the elementary extension. We
use the following random walk at the x-graph (Fig. 4).

Let us enumerate the incoming or outgoing external edges by Greek and Latin indices respectively. Suppose
we have chosen the outgoing external edge number i in the previous steps. Otherwise the procedure for incoming
external edge is the same,if we change the direction of all edges of the x-graph. Start a random walk from the
outgoing external edge number i in opposite direction to the direction of the edges (Fig. 4a). In each vertex
(including the incident vertex of the edge number i), we choose the u-turn or the continuation of the walk with
probability 1/2. If we have chosen the continuation of the walk, we choose one of two edges with probability
1/2 and go to the next vertex. If we have chosen the u-turn, we continue the walk in the direction of edges.
We choose one of two edges with probability 1/2 and go to the next vertex. But we cannot choose the edge if
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Figure 4: The random walk at the x-graph.

this edge was included in the path when we walked in opposite direction. In this case, we choose the other edge
without an alternative. We end the walk in some outgoing external edge number j. This is the second external
edge that takes part in the elementary extension. A new vertex is added to two outgoing external edges. We
get the elementary extension of the �rst type. In this procedure, there is a special case (Fig. 4b). During the
walk in the opposite direction to the edges we can go to the vertex that is incident to an incoming external
edge number α. If we choose this edge number α, we cannot go to the next vertex because this vertex does not
exist. In this case, we interrupt the walk and add a new vertex only to one outgoing external edge number i.
We get the elementary extension of the second type.

In this model, causality is de�ned as the partial order of vertices. But the causality has a real dynamical
meaning. The probability to add a new vertex to the future can depend only on the subgraph that precedes
this vertex [7]. Similarly, the probability to add a new vertex to the past can depend only on the subgraph that
follows this vertex. Only the normalization constant depends on the other parts of the x-graph. The considered
algorithm satis�es the causality principle.

A simple repetitive in�nite structure

This algorithm can generate a simple repetitive in�nite structure with nonzero probability. Let begin from a
single vertex number 0. In the �rst step, the probability to get two vertices that are connected by a double
edge is q1 = 1/2. Denote by N the number of steps during the growth. Denote by qN the probability to get a
sequence of N + 1 vertices connected by N double edges at the step number N . We have

qN+1 = (1− 2−(N+1))qN . (1)
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This is iterative formula. We get an explicit equation.

qN+1 = (1− 2−(N+1))(1− 2−N ) . . . (1− 2−2) 1
2 =

= 1
2 + −1

22

∑N
k1=1 2−k1 + (−1)2

23

∑N
k1=2(2−k1

∑k1−1
k2=1 2−k2)+

+ (−1)3

24

∑N
k1=3(2−k1

∑k1−1
k2=2(2−k2

∑k2−1
k3=1 2−k3))+

+ (−1)m

2(m+1)

∑N
k1=m(2−k1

∑k1−1
k2=m−1(2−k2 · · ·

∑km−1−1
km=1 2−km))+

+(−1)N2
−(N+1)(N+2)

2 .

(2)

Consider the lower bound of qN+1. Cast out all positive terms except 1/2. Using,

ki−1−1∑
ki=1

2−ki = 1− 2−(ki−1−1), (3)

∑ki−1−1
ki=m−i+1 2−ki =

∑ki−1−1
ki=1 2−ki −

∑m−i
ki=1 2−ki =

= 1− 2−(ki−1−1) − (1− 2−(m−i)) < 2−(m−i) ≤ 1,

(4)

we get

qN+1 ≥
1

2
− 1

22

(N−2)/2∑
k=0

2−4k if N is even, (5)

qN+1 ≥
1

2
− 1

22

(N−1)/2∑
k=0

2−4k if N is odd. (6)

Consider the limit of in�nite N .

q∞ ≥
7

30
. (7)

We get the nonzero probability of generation of in�nite sequence of vertices that are connected by double
edges. Such sequence can be a part of a more complicated structure. Let begin from any �nite x-graph. During
sequential growth there is a nonzero probability a to get an x-graph such that all incoming or outgoing external
edges form pairs that are incident to the same vertex (Fig. 5a). During sequential growth each this pair can
form an in�nite sequence of vertices that are connected by double edges with probability that no less than 7/30.
Consequently there is nonzero probability that the sequential growth of any �nite x-graph from some step is
the growth of in�nite sequences of vertices that are connected by double edges (Fig. 5b). This probability is no
less than a(7/30)n, where n is the number of incoming or outgoing external edges.

Conclusions

We get the repetitive quasi-regular structure. Only a distribution of lengths of sequences is random at the each
�nite step. We can get rarely connected sequences of vertices by some modi�cation of the algorithm. This �rst
simple example shows that a non-deterministic sequential growth of a causal set can generate self-organized
structures.
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Figure 5: Two stages of sequential growth of structure.

I hope that:

� The origin of many problems in quantum theory is that quantum theory uses classical spacetime.

� The causal set hypothesis is a right step from classical spacetime to discrete pregeometry on a microscopic
level.

� The particles are self-organized structures of a causal set.
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